【題目】設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),f′(x),g'(x)為其導(dǎo)函數(shù),當(dāng)x<0時,f′(x)g(x)+f(x)g'(x)<0且g(﹣3)=0,則使得不等式f(x)g(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣3)B.(﹣3,0)C.(0,3)D.(3,+∞)
【答案】BD
【解析】
由當(dāng)x<0時,f′(x)g(x)+f(x)g'(x)<0可得,故可構(gòu)造函數(shù)h(x)=f(x)g(x),由f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以h(x)在R上單調(diào)遞減且為奇函數(shù),結(jié)合圖像即可得解.
∵f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),
∴f(﹣x)=﹣f(x),g(﹣x)=g(x),
令h(x)=f(x)g(x),
則h(﹣x)=﹣h(x),
故h(x)=f(x)g(x)為R上的奇函數(shù),
∵當(dāng)x<0時,f′(x)g(x)+f(x)g'(x)<0,
即x<0時,h′(x)=f′(x)g(x)+f(x)g'(x)<0,
∴h(x)=f(x)g(x)在區(qū)間(﹣∞,0)上單調(diào)遞減,
∴奇函數(shù)h(x)在區(qū)間(0,+∞)上也單調(diào)遞減,
如圖:
由g(﹣3)=0,
∴h(﹣3)=h(3)=0,
∴當(dāng)x∈(﹣3,0)∪(3,+∞)時,h(x)=f(x)g(x)<0,
故選:BD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接全國文明城市復(fù)檢,綿陽某中學(xué)組織了本校1000名學(xué)生進(jìn)行社會主義核心價值觀、文明常識等內(nèi)容測試。統(tǒng)計測試成績數(shù)據(jù)得到如圖所示的頻率分布直方圖,已知,滿分100分.
(1)求測試分?jǐn)?shù)在的學(xué)生人數(shù);
(2)求這1000名學(xué)生測試成績的平均數(shù)以及中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有六名同學(xué)參加演講比賽,編號分別為1,2,3,4,5,6,比賽結(jié)果設(shè)特等獎一名,,,,四名同學(xué)對于誰獲得特等獎進(jìn)行預(yù)測.說:不是1號就是2號獲得特等獎;說:3號不可能獲得特等獎;說:4,5,6號不可能獲得特等獎;說:能獲得特等獎的是4,5,6號中的一個.公布的比賽結(jié)果表明,,,,中只有一個判斷正確.根據(jù)以上信息,獲得特等獎的是( )號同學(xué).
A.1B.2C.3D.4,5,6號中的一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家號召,某校組織部分學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答,并將學(xué)生的作答結(jié)果分為“合格”與“不合格”兩類與“問卷的結(jié)果”有關(guān)?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認(rèn)為“性別”與“問卷的結(jié)果”有關(guān)?
(2)在成績合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再從這9人中隨機(jī)抽取5人發(fā)送獎品,記拿到獎品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個動點(diǎn),過點(diǎn)P作直線,使得,與橢圓C都只有一個交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月5日, 美國NBA火箭隊(duì)總經(jīng)理莫雷公開發(fā)布涉港錯誤言論,中國公司與明星紛紛站出來抵制火箭隊(duì),隨后京東、天貓、淘寶等中國電商平臺全線下架了火箭隊(duì)的所有商品,當(dāng)天有大量網(wǎng)友關(guān)注此事,某網(wǎng)上論壇從關(guān)注此事跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,,得到如圖所示的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進(jìn)一步統(tǒng)計得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:
一般關(guān)注 | 強(qiáng)烈關(guān)注 | 合計 | |
男 | 60 | ||
女 | 5 | 40 | |
合計 | 100 |
(1)補(bǔ)全列聯(lián)表中數(shù)據(jù),并判斷能否有的把握認(rèn)為網(wǎng)友對此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?
(2)現(xiàn)已從男性網(wǎng)友中分層抽樣選取了6人,再從這6人中隨機(jī)選取2人,求這2人中至少有1人屬于“強(qiáng)烈關(guān)注”的概率.
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,點(diǎn), , 分別是線段, 和上的動點(diǎn),觀察直線與, 與.給出下列結(jié)論:
①對于任意給定的點(diǎn),存在點(diǎn),使得;
②對于任意給定的點(diǎn),存在點(diǎn),使得;
③對于任意給定的點(diǎn),存在點(diǎn),使得;
④對于任意給定的點(diǎn),存在點(diǎn),使得.
其中正確結(jié)論的個數(shù)是( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱.住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫() | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫() | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(I)請你計算住院期間該患者體溫不低于的各天體溫平均值;
(II)在19日—23日期間,醫(yī)生會隨機(jī)選取3天在測量體溫的同時為該患者進(jìn)行某一特殊項(xiàng)目“a項(xiàng)目”的檢查,記X為高熱體溫下做“a項(xiàng)目”檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;
(III)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在橢圓上且位于第二象限,過點(diǎn)作直線,過點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com