已知函數(shù)f(x)=x3+ax2+bx(a,b∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=,且函數(shù)f(x)在上不存在極值點(diǎn),求a的取值范圍.
(1)當(dāng)b≥1時(shí),f(x)的增區(qū)間為(-∞,+∞);當(dāng)b<1時(shí),f(x)的增區(qū)間為(-∞,-1-),(-1+,+∞);減區(qū)間為(-1-,-1+).(2)(-∞,0]
【解析】(1)當(dāng)a=1時(shí),f′(x)=x2+2x+b.
①若Δ=4-4b≤0,即b≥1時(shí),f′(x)≥0,
所以f(x)為(-∞,+∞)上為增函數(shù),所以f(x)的增區(qū)間為(-∞,+∞);
②若Δ=4-4b>0,即b<1時(shí),f′(x)=(x+1+)(x+1-),
所以f(x)在(-∞,-1-),(-1+,+∞)上為增函數(shù),f(x)在(-1-,-1+)上為減函數(shù).
所以f(x)的增區(qū)間為(-∞,-1-),(-1+,+∞),減區(qū)間為(-1-,-1+).
綜上,當(dāng)b≥1時(shí),f(x)的增區(qū)間為(-∞,+∞);當(dāng)b<1時(shí),f(x)的增區(qū)間為(-∞,-1-),(-1+,+∞);減區(qū)間為(-1-,-1+).
(2)由f(1)=,得b=-a,
即f(x)=x3+ax2-ax,f′(x)=x2+2ax-a.
令f′(x)=0,即x2+2ax-a=0,變形得(1-2x)a=x2,
因?yàn)?/span>x∈,所以a=.
令1-2x=t,則t∈(0,1),=.
因?yàn)?/span>h(t)=t+-2在t∈(0,1)上單調(diào)遞減,故h(t)∈(0,+∞).
由y=f(x)在上不存在極值點(diǎn),得a=在上無(wú)解,所以,a∈(-∞,0].
綜上,a的取值范圍為(-∞,0]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊(cè)新課標(biāo)·通用版專(zhuān)題七練習(xí)卷(解析版) 題型:選擇題
將容量為n的樣本中的數(shù)據(jù)分成6組,若第一組至第六組數(shù)據(jù)的頻率之比為2∶3∶4∶6∶4∶1,且前三組數(shù)據(jù)的頻數(shù)之和等于27,則n的值為( )
A.70 B.60 C.50 D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集8講練習(xí)卷(解析版) 題型:填空題
在△ABC中,已知內(nèi)角A=,邊BC=2.設(shè)內(nèi)角B=x,周長(zhǎng)為y,則y=f(x)的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集7講練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=sin ωx+cos ωx(x∈R,ω>0)滿足f(α)=-2,f(β)=0,且|α-β|的最小值為,則函數(shù)f(x)的單調(diào)遞增區(qū)間為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集7講練習(xí)卷(解析版) 題型:選擇題
設(shè)sin=,則sin 2θ=( )
A.- B.- C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集6講練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ax-x3,對(duì)區(qū)間(0,1)上的任意x1,x2,且x1<x2,都有f(x2)-f(x1)>x2-x1成立,則實(shí)數(shù)a的取值范圍為( )
A.(0,1) B.[4,+∞) C.(0,4] D.(1,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集6講練習(xí)卷(解析版) 題型:選擇題
過(guò)曲線y=x3+x-2上一點(diǎn)P0處的切線平行于直線y=4x,則點(diǎn)P0的一個(gè)坐標(biāo)是( )
A.(0,-2) B.(1,1) C.(1,4) D.(-1,-4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集4講練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當(dāng)a=時(shí),求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱(chēng)x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對(duì)于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集3A講練習(xí)卷(解析版) 題型:選擇題
已知實(shí)數(shù)x,y滿足則z=2x-3y的最大值是( )
A.-6 B.-1 C.6 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com