【題目】給出下列四個命題:

①“若的極值點,則”的逆命題為真命題;

②“平面向量的夾角是鈍角的充分不必要條件是

③若命題,則

④函數(shù)在點處的切線方程為.

其中不正確的個數(shù)是

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】的極值點,則的逆命題為:若的極值點,這個命題是錯誤的,只有當是導函數(shù)的變號零點時才是極值點;故逆命題是假命題;

平面向量的夾角是鈍角的充分不必要條件是;這是假命題;向量夾角為鈍角則,且向量夾角不為平角,故應是必要不充分條件;故是假命題;

③若命題,則 。故原命題是假命題;

④函數(shù)在點處的切線斜率為:0, ,故代入得到切線方程為: .故為真命題;

故正確的只有一個④其它三個均錯。

故答案為:C。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是DD1、DB的中點,求證:

1EF∥平面ABC1D1;

2EF⊥B1C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,,點的內(nèi)心,記,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在桂林市某中學高中數(shù)學聯(lián)賽前的模擬測試中,得到甲、乙兩名學生的6次模擬測試成績(百分制)的莖葉圖.分數(shù)在85分或85分以上的記為優(yōu)秀.

(1)根據(jù)莖葉圖讀取出乙學生6次成績的眾數(shù),并求出乙學生的平均成績以及成績的中位數(shù);

(2)若在甲學生的6次模擬測試成績中去掉成績最低的一次,在剩下5次中隨機選擇2次成績作為研究對象,求在選出的成績中至少有一次成績記為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)集具有性質(zhì)對任意的,使得成立.

(1)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

(2)求證: ;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平直角坐標系中,已知點,

(1)在軸的正半軸上求一點,使得以為直徑的圓過點,并求該圓的方程;

(2)在(1)的條件下,點在線段內(nèi),且平分,試求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是__________.

①每條直線都有唯一一個傾斜角與之對應,也有唯一一個斜率與之對應;

②傾斜角的范圍是:,且當傾斜角增大時,斜率不一定增大

③直線過點,且橫截距與縱截距相等,則直線的方程一定為;

④過點,且斜率為1的直線的方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為菱形,側(cè)面為等邊三角形,且側(cè)面底面 , 分別為, 的中點.

Ⅰ)求證: .

Ⅱ)求證:平面平面.

Ⅲ)側(cè)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左右焦點分別為、,離心率.過的直線交橢圓于、兩點,三角形的周長為.

(1)求橢圓的方程;

(2)若弦,求直線的方程.

查看答案和解析>>

同步練習冊答案