【題目】
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),
(Ⅰ)求證:向量與向量不可能平行;(Ⅱ)若f(x)=·,且x∈時(shí),求函數(shù)f(x)的最大值及最小值
【答案】(Ⅰ)見解析(2)x=時(shí),f(x)有最大值; x=-時(shí),f(x)有最小值-1.
【解析】
解:(Ⅰ)假設(shè)∥,則2cosx(cosx+sinx)-sinx(cosx-sinx)=0,
∴2cos2x+sinxcosx+sin2x=0,3+sin2x+cos2x=0,即sin2x+cos2x=-3,
∴sin(2x+)=-,與|sin(2x+)|≤1矛盾,故向量與向量不可能平行.
(Ⅱ)∵f(x)==(cosx+sinx)·(cosx-sinx)+sinx·2cosx=cos2x-sin2x+2sinxcosx=cos2x+sin2x= sin(2x+),
∵-≤x≤,∴-≤2x+≤,∴當(dāng)2x+=,即x=時(shí),f(x)有最大值;
當(dāng)2x+=-,即x=-時(shí),f(x)有最小值-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.
(1)求的通項(xiàng)公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設(shè)橢圓上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被軸截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形, , 平面, , ∥, 為中點(diǎn).
(1)求證: ∥平面;
(2)求證: ;
(3)若為線段上的點(diǎn),當(dāng)三棱錐的體積為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;
(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點(diǎn)為棱上一點(diǎn),若平面,,求實(shí)數(shù)的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點(diǎn)到平面的距離.
試題解析:((1)因?yàn)?/span>平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).
因?yàn)?/span>,
.
(2)因?yàn)?/span> , ,
所以平面,
又因?yàn)?/span>平面,
所以平面平面,
平面平面,
在平面內(nèi)過點(diǎn)作直線于點(diǎn),則平面,
在和中,
因?yàn)?/span>,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點(diǎn)B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.
(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時(shí),日平均派送量為單.
若將頻率視為概率,回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,離心率,點(diǎn)在橢圓上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P是橢圓C上一點(diǎn),左頂點(diǎn)為A,上頂點(diǎn)為B,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】—般地,若函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,則稱為的“倍跟隨區(qū)間”;特別地,若函數(shù)的定義域?yàn)?/span>,值域也為,則稱為的“跟隨區(qū)間”.下列結(jié)論正確的是( )
A.若為的跟隨區(qū)間,則
B.函數(shù)不存在跟隨區(qū)間
C.若函數(shù)存在跟隨區(qū)間,則
D.二次函數(shù)存在“3倍跟隨區(qū)間”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com