【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請說明理由.
【答案】(Ⅰ)證明見解析;(Ⅱ) ;(Ⅲ) .
【解析】試題分析:(Ⅰ)折起后仍有,由面面垂直的性質(zhì)可得平面,
平面, ;(Ⅱ)直接求出三棱錐的體積,利用分割法求出,從而可得結(jié)果;(Ⅲ)根據(jù)三角形相似可得,由線面平行的性質(zhì)定理可得,由中位線定理可得,,在中, ,.
試題解析:(Ⅰ)在梯形中,因?yàn)?/span>,所以,
平面平面, 平面平面,
平面,平面,
平面, .
(Ⅱ)為中點(diǎn),
到底面的距離為,
在梯形中, ,
,.
,在中, ,
平面, 平面,
平面平面,
平面平面, ,
到平面的距離為.
,.
.
(Ⅲ)連結(jié)交于,連結(jié),
在四邊形中,
,
,
,
平面,平面平面,
,
在中, ,
,
,
在中, ,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線與軸,軸的交點(diǎn)分別為,圓以線段為直徑.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線過點(diǎn),與圓交于點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)國家“陽光體育運(yùn)動(dòng)”的號召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動(dòng)情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動(dòng)倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,從高一高二基礎(chǔ)年級與高三三個(gè)年級學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),得到如圖所示的頻率分布直方圖。
(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間.并估計(jì)高一年級每周平均體育運(yùn)動(dòng)時(shí)間不足4小時(shí)的人數(shù);
(2)規(guī)定每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí)記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí),請完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間是否“優(yōu)秀”與年級有關(guān)”.
基礎(chǔ)年級 | 高三 | 合計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計(jì) | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點(diǎn)P,且垂直于直線x-2y-1=0的直線方程;
(2)求過點(diǎn)P(-1,3),并且在兩坐標(biāo)軸上的截距相等的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班舉行電腦漢字錄入比賽,參賽學(xué)生每分鐘錄入漢字的個(gè)數(shù)經(jīng)統(tǒng)計(jì)計(jì)算后填入下表,某同學(xué)根據(jù)表中數(shù)據(jù)分析得出的結(jié)論正確的是( )
班級 | 參加人數(shù) | 中位數(shù) | 方差 | 平均數(shù) |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
A.甲、乙兩班學(xué)生成績的平均數(shù)相同
B.甲班的成績波動(dòng)比乙班的成績波動(dòng)大
C.乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字?jǐn)?shù)≥150個(gè)為優(yōu)秀)
D.甲班成績的眾數(shù)小于乙班成績的眾數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),
(Ⅰ)求證:向量與向量不可能平行;(Ⅱ)若f(x)=·,且x∈時(shí),求函數(shù)f(x)的最大值及最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月日至月日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計(jì)算公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求證:函數(shù)只有一個(gè)零點(diǎn),且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com