【題目】甲、乙兩班舉行電腦漢字錄入比賽,參賽學(xué)生每分鐘錄入漢字的個數(shù)經(jīng)統(tǒng)計計算后填入下表,某同學(xué)根據(jù)表中數(shù)據(jù)分析得出的結(jié)論正確的是(

班級

參加人數(shù)

中位數(shù)

方差

平均數(shù)

55

149

191

135

55

151

110

135

A.甲、乙兩班學(xué)生成績的平均數(shù)相同

B.甲班的成績波動比乙班的成績波動大

C.乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字?jǐn)?shù)≥150個為優(yōu)秀)

D.甲班成績的眾數(shù)小于乙班成績的眾數(shù)

【答案】ABC

【解析】

根據(jù)圖表直接計算平均數(shù)、方差和眾數(shù)與甲、乙兩班學(xué)生每分鐘輸入漢字?jǐn)?shù)≥150個的人數(shù)分析即可.

甲、乙兩班學(xué)生成績的平均數(shù)都是35,故兩班成績的平均數(shù)相同,A正確;,甲班成績不如乙班穩(wěn)定,即甲班的成績波動較大,B正確.

甲、乙兩班人數(shù)相同,但甲班的中位數(shù)為149,乙班的中位數(shù)為151,從而易知乙班不少于150個的人數(shù)要多于甲班,C正確;由題表看不出兩班學(xué)生成績的眾數(shù),D錯誤.

故選:ABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,8484,8686,8688,88,88,88若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),AB兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點為,離心率為

(1)求橢圓的方程;

(2)設(shè)點是橢圓的右頂點,過點的直線與橢圓交于 兩點,直線 與直線分別交于, 兩點.求證:點在以為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點到兩點的距離之和為4,設(shè)點的軌跡為,直線交于兩點。

(Ⅰ)寫出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , .將沿折起至,使得平面平面(如圖2), 為線段上一點.

圖1 圖2

(Ⅰ)求證:

(Ⅱ)若為線段中點,求多面體與多面體的體積之比;

(Ⅲ)是否存在一點,使得平面?若存在,求的長.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,已知是正三角形, 平面的中點, 在棱上,且.

(1)求三棱錐的體積;

(2)求證: 平面;

(3)若中點, 在棱上,且,求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量且函數(shù),若函數(shù)f(x)的圖象上兩個相鄰的對稱軸距離為.

(1)求函數(shù)f(x)的解析式;

(2)將函數(shù)y=f(x)的圖象向左平移個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達(dá)式并其對稱軸;

(3)若方程f(x)=m(m>0)在時,有兩個不同實數(shù)根x1,x2,求實數(shù)m的取值范圍,并求出x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(–1,2),B(2,8)以及,=–13,求點C、D的坐標(biāo)和的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案