【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求證:函數(shù)只有一個零點,且.
【答案】(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和當時,. 所以,函數(shù)的單調(diào)遞減區(qū)間是當時,,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(Ⅱ)證明見解析
【解析】
試題(Ⅰ)先求出函數(shù)的定義域,求出函數(shù)的導數(shù),再令,求得解,
討論當時及,列出函數(shù)與隨的變化情況得到函數(shù)的單調(diào)區(qū)間
(Ⅱ)當時,由(Ⅰ)知,函數(shù)的極小值,極大值,并且極小值與極大值均大于0,又由函數(shù)在是減函數(shù),可得至多有一個零點,又由可得函數(shù)只有一個零點,且,得到證明
試題解析:(Ⅰ)解:的定義域為.
令,或
當時,,函數(shù)與隨的變化情況如下表:
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和
當時,. 所以,函數(shù)的單調(diào)遞減區(qū)間是
當時,,函數(shù)與隨的變化情況如下表:
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.
(Ⅱ)證明:當時,由(Ⅰ)知,的極小值為,極大值為.
因為,且又由函數(shù)在是減函數(shù),可得至多有一個零點. 又因為,所以 函數(shù)只有一個零點,且.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點.
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點,求多面體與多面體的體積之比;
(Ⅲ)是否存在一點,使得平面?若存在,求的長.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學導師計劃從自己所培養(yǎng)的研究生甲、乙兩人中選一人,參加雄安新區(qū)某部門組織的計算機技能大賽,兩人以往5次的比賽成績統(tǒng)計如下:(滿分100分,單位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績 | 87 | 87 | 84 | 100 | 92 |
乙的成績 | 100 | 80 | 85 | 95 | 90 |
(1)試比較甲、乙二人誰的成績更穩(wěn)定;
(2)在一次考試中若兩人成績之差的絕對值不大于2,則稱兩人“實力相當”.若從上述5次成績中任意抽取2次,求恰有一次兩人“實力相當”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)設為橢圓上任一點, 為其右焦點, 是橢圓的左、右頂點,點滿足.
①證明: 為定值;
②設是直線上的任一點,直線分別另交橢圓于兩點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】—般地,若函數(shù)的定義域為,值域為,則稱為的“倍跟隨區(qū)間”;特別地,若函數(shù)的定義域為,值域也為,則稱為的“跟隨區(qū)間”.下列結(jié)論正確的是( )
A.若為的跟隨區(qū)間,則
B.函數(shù)不存在跟隨區(qū)間
C.若函數(shù)存在跟隨區(qū)間,則
D.二次函數(shù)存在“3倍跟隨區(qū)間”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓和橢圓, 是橢圓的左焦點.
(Ⅰ)求橢圓的離心率和點的坐標;
(Ⅱ)點在橢圓上,過作軸的垂線,交圓于點(不重合),是過點的圓的切線.圓的圓心為點,半徑長為.試判斷直線與圓的位置關系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元).
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列說法
①互斥事件不一定是對立事件,對立事件一定是互斥事件
②演繹推理是從特殊到一般的推理,它的一般模式是“三段論”
③殘差圖的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預報精度越高
④若,則事件與互斥且對立
⑤甲乙兩艘輪船都要在某個泊位?4小時,假定它們在一晝夜的時間段中隨機到達,則這兩艘船中至少有一艘在?坎次粫r必須等待的概率為.
其中正確的說法是______(寫出全部正確說法的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com