【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,,,分別為,的中點(diǎn).
(1)證明:;
(2)若,求三棱錐的體積.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)取AC中點(diǎn)F,連接DF,EF,可得DF∥AB,結(jié)合AB⊥AC,得DF⊥AC,然后證明EF⊥平面ABC,可得EF⊥AC,由線(xiàn)面垂直的判定可得AC⊥平面DEF,從而得到DE⊥AC;
(2)由(1)知,EF⊥平面ABC,EF=CC1=1,結(jié)合D是BC的中點(diǎn),求得三角形ABD的面積,然后由棱柱體積公式求解即可.
(1)取AC的中點(diǎn)F,連接DF,EF,因?yàn)镈是BC的中點(diǎn),所以DF∥AB,
因?yàn)锳B⊥AC,所以DF⊥AC,
同理EF∥CC1,而CC1⊥平面ABC,所以EF⊥平面ABC,
又AC平面ABC,所以EF⊥AC,
又DF∩EF=F,所以AC⊥平面DEF,
因?yàn)镈E平面DEF,所以DE⊥AC.
(2)由(1)知,EF⊥平面ABC,EF=CC1=1,
因?yàn)镈是BC的中點(diǎn),
所以S△ABD=S△ABC=×2×2=1,
所以VE-ABD=S△ABD·EF=×1×1=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),==0,(x1≠x2),|x2-x1|min=,f(x)=f(-x),將函數(shù)f(x)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞減區(qū)間是
A. [kπ-,kπ+](k∈Z) B. [kπ,kπ+](k∈Z)
C. [kπ+,kπ+](k∈Z) D. [kπ+,kπ+](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線(xiàn)段,,的中點(diǎn),點(diǎn)是線(xiàn)段的中點(diǎn).求證:
(1)平面;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,AD=2,E,F為線(xiàn)段AB的三等分點(diǎn),G、H為線(xiàn)段DC的三等分點(diǎn).將長(zhǎng)方形ABCD卷成以AD為母線(xiàn)的圓柱W的半個(gè)側(cè)面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點(diǎn),求三棱錐H—AGP的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:為偶函數(shù);
(2)設(shè),若對(duì)任意的,恒成立,求實(shí)數(shù)k的取值范圍.
(3)是否存在正實(shí)數(shù),使得在區(qū)間上的值域剛好是,若存在,請(qǐng)寫(xiě)在所有滿(mǎn)足條件的區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點(diǎn)E為AD的中點(diǎn),,平面ABCD,且
求證:;
線(xiàn)段PC上是否存在一點(diǎn)F,使二面角的余弦值是?若存在,請(qǐng)找出點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù),如果滿(mǎn)足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(Ⅱ)若是上的有界函數(shù),且的上界為3,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,求函數(shù)在上的上界的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓.
(1)若直線(xiàn)l過(guò)且被圓C截得的弦長(zhǎng)為,求直線(xiàn)l的方程;
(2)點(diǎn),,點(diǎn)Q是圓C上的任意一點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次社會(huì)實(shí)踐活動(dòng)中,某數(shù)學(xué)調(diào)研小組根據(jù)車(chē)間持續(xù)5個(gè)小時(shí)的生產(chǎn)情況畫(huà)出了某種產(chǎn)品的總產(chǎn)量(單位:千克)與時(shí)間(單位:小時(shí))的函數(shù)圖像,則以下關(guān)于該產(chǎn)品生產(chǎn)狀況的正確判斷是( ).
A.在前三小時(shí)內(nèi),每小時(shí)的產(chǎn)量逐步增加
B.在前三小時(shí)內(nèi),每小時(shí)的產(chǎn)量逐步減少
C.最后一小時(shí)內(nèi)的產(chǎn)量與第三小時(shí)內(nèi)的產(chǎn)量相同
D.最后兩小時(shí)內(nèi),該車(chē)間沒(méi)有生產(chǎn)該產(chǎn)品
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com