【題目】定義在上的函數(shù),如果滿(mǎn)足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是上的有界函數(shù),其中稱(chēng)為函數(shù)的上界.已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(Ⅱ)若是上的有界函數(shù),且的上界為3,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,求函數(shù)在上的上界的取值范圍.
【答案】(Ⅰ)(3,+∞),不是有界函數(shù).(Ⅱ)﹣5≤a≤1;(Ⅲ)當(dāng)時(shí),T的取值范圍是;當(dāng)時(shí),T的取值范圍是[,)
【解析】
(Ⅰ)當(dāng)a=1時(shí),易知f(x)在(0,+∞)上遞增,有f(x)>f(0)=3,再由給出的定義判斷;
(Ⅱ)根據(jù)函數(shù)f(x)在(﹣∞,0]上是以3為上界的函數(shù),得到|1+2x+4x|≤3,換元以后得到關(guān)于t的不等式,根據(jù)二次函數(shù)的性質(zhì)寫(xiě)出對(duì)稱(chēng)軸,求出a的范圍.
(Ⅲ)據(jù)題意先研究函數(shù)g(x)在[0,1]上的單調(diào)性,確定函數(shù)g(x)的范圍,即分別求的最大值和最小值,根據(jù)上界的定義,T不小于最大值,從而解決..
(Ⅰ)當(dāng)a=1時(shí),
因?yàn)?/span>f(x)在(0,+∞)上遞增,所以f(x)>f(0)=3,
即f(x)在(0,+∞)的值域?yàn)椋?/span>3,+∞)故不存在常數(shù)M>0,使|f(x)|≤M成立
所以函數(shù)f(x)在(﹣∞,0)上不是有界函數(shù).
(Ⅱ)由已知函數(shù)f(x)在(﹣∞,0]上是以3為上界的函數(shù),即:|1+a2x+4x|≤3
設(shè)t=2x,所以t∈(0,1),不等式化為|1+at+t2|≤3
當(dāng)0時(shí),1且2+a≤3得﹣2≤a<0
當(dāng)或
即a≤﹣2或a≥0時(shí),得﹣5≤a≤﹣2或0≤a≤1
綜上有﹣5≤a≤1
(Ⅲ),
∵m>0,x∈[0,1]
∴g(x)在[0,1]上遞減,
∴g(1)≤g(x)≤g(0)即
①當(dāng),即時(shí),,
此時(shí),
②當(dāng),即時(shí),,
此時(shí),
綜上所述,當(dāng)時(shí),T的取值范圍是;
當(dāng)時(shí),T的取值范圍是[,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)經(jīng)過(guò)原點(diǎn)的切線(xiàn)方程;
(Ⅱ)若在時(shí),有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,在四面體中,點(diǎn)分別是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:四邊形為矩形;
(Ⅲ)是否存在點(diǎn),到四面體六條棱的中點(diǎn) 的距離相等?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水域受到污染,水務(wù)部門(mén)決定往水中投放一種藥劑來(lái)凈化水質(zhì),已知每次投放質(zhì)量為的藥劑后,經(jīng)過(guò)()天,該藥劑在水中釋放的濃度(毫克升)為,其中,當(dāng)藥劑在水中釋放濃度不低于(毫克升)時(shí)稱(chēng)為有效凈化,當(dāng)藥劑在水中釋放的濃度不低于(毫克升)且不高于(毫克升)時(shí)稱(chēng)為最佳凈化.
(1)如果投放的藥劑質(zhì)量為,那么該水域達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為,為了使該水域天(從投放藥劑算起,包括第天)之內(nèi)都達(dá)到最佳凈化,確定應(yīng)該投放的藥劑質(zhì)量的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,再將所得的圖象向下平移一個(gè)單位長(zhǎng)度得到函數(shù)的圖象,且的圖象與直線(xiàn)相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)任意恒成立,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶(hù)貧困戶(hù).為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶(hù)村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶(hù)的貧困指標(biāo)和,制成下圖,其中“”表示甲村貧困戶(hù),“”表示乙村貧困戶(hù).
若,則認(rèn)定該戶(hù)為“絕對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“相對(duì)貧困戶(hù)”,若,則認(rèn)定該戶(hù)為“低收入戶(hù)”;
若,則認(rèn)定該戶(hù)為“今年能脫貧戶(hù)”,否則為“今年不能脫貧戶(hù)”.
(1)從甲村50戶(hù)中隨機(jī)選出一戶(hù),求該戶(hù)為“今年不能脫貧的絕對(duì)貧困戶(hù)”的概率;
(2)若從所有“今年不能脫貧的非絕對(duì)貧困戶(hù)”中選3戶(hù),用表示所選3戶(hù)中乙村的戶(hù)數(shù),求的分布列和數(shù)學(xué)期望;
(3)試比較這100戶(hù)中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點(diǎn)( 。
A. 向右平移個(gè)單位長(zhǎng)度 B. 向左平移個(gè)單位長(zhǎng)度
C. 向右平移個(gè)單位長(zhǎng)度 D. 向左平移個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿(mǎn)足,其中;
:實(shí)數(shù)滿(mǎn)足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上頂點(diǎn)為點(diǎn),右焦點(diǎn)為.延長(zhǎng)交橢圓于點(diǎn),且滿(mǎn)足.
(1)試求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作與軸不重合的直線(xiàn)和橢圓交于兩點(diǎn),設(shè)橢圓的左頂點(diǎn)為點(diǎn),且直線(xiàn)分別與直線(xiàn)交于兩點(diǎn),記直線(xiàn)的斜率分別為,則與之積是否為定值?若是,求出該定值;若不是,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com