【題目】已知向量 =(1,2), =(x,1);
(1)若( +2 )⊥(2 )時(shí),求x的值;
(2)若向量 與向量 的夾角為銳角,求x的取值范圍.

【答案】
(1)解: , ;

;

=(1+2x)(2﹣x)+12=0;

解得x=﹣2,或


(2)解:若向量 與向量 的夾角為銳角,則 ,且 , 不平行;

;

∴x>﹣2,且 ;

∴x的取值范圍為


【解析】(1)先寫出 的坐標(biāo),根據(jù)( +2 )⊥(2 )便有( +2 )(2 )=0,這樣即可求出x值;(2)向量 與向量 的夾角為銳角時(shí)便有, ,并且 不平行,這樣便可建立關(guān)于x的不等式組,從而得出x的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是(
A.f(x)=x
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017河北唐山二模】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:

項(xiàng)目

生產(chǎn)成本

檢驗(yàn)費(fèi)/

調(diào)試費(fèi)

出廠價(jià)

金額

1000

100

200

3000

求每臺(tái)儀器能出廠的概率;

求生產(chǎn)一臺(tái)儀器所獲得的利潤(rùn)為1600元的概率注:利潤(rùn)出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi);

假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤(rùn),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017河北唐山二!已知函數(shù)的圖象與軸相切,

求證:;

,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017北京豐臺(tái)5月綜合測(cè)試】已知函數(shù).

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

證明:對(duì)于在區(qū)間上有極小值,且極小值大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x軸、y軸正方向上的單位向量分別是 、 ,坐標(biāo)平面上點(diǎn)列An、Bn(n∈N*)分別滿足下列兩個(gè)條件:① = = + ;② =4 = ×4 ;
(1)寫出 的坐標(biāo),并求出 的坐標(biāo);
(2)若△OAnBn+1的面積是an , 求an(n∈N*)的表達(dá)式;
(3)對(duì)于(2)中的an , 是否存在最大的自然數(shù)M,對(duì)一切n∈N*都有an≥M成立?若存在,求出M,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017鎮(zhèn)江一模20】已知函數(shù),為常數(shù))

(1)若函數(shù)與函數(shù)處有相同的切線,求實(shí)數(shù)的值;

(2)若,且,證明:;

(3)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)h(x)=2sin(2x+ )的圖象向右平移 個(gè)單位,再向上平移2個(gè)單位,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x=0對(duì)稱
B.關(guān)于直線x=π對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,2)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,(5a﹣4c)cosB﹣4bcosC=0.
(1)求cosB的值;
(2)若c=5,b= ,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案