【題目】如圖,雙曲線的兩頂點(diǎn)為,,虛軸兩端點(diǎn)為,,兩焦點(diǎn)為,,若以為直徑的圓內(nèi)切于菱形,切點(diǎn)分別為,,,.則
(1)雙曲線的離心率______;
(2)菱形的面積與矩形的面積的比值______.
【答案】. .
【解析】
對(duì)于(1)由題意可得頂點(diǎn)和虛軸端點(diǎn)坐標(biāo)及交點(diǎn)坐標(biāo),從而求得菱形的邊長(zhǎng),得到到直線的距離為,接下來(lái)根據(jù)雙曲線中的關(guān)系和離心率公式,即可得到所求值;對(duì)于(2),分別計(jì)算出菱形面積與矩形的面積,然后根據(jù)的關(guān)系求出它們的比值即可.
(1)直線的方程為,
所以到直線的距離為,
因?yàn)橐?/span>為直徑的圓內(nèi)切于菱形,
所以,
所以,
所以,即,
因?yàn)?/span>,解得,,
故答案為:.
(2)菱形的面積,
設(shè)矩形,,所以,
因?yàn)?/span>,所以,
所以矩形的面積,
所以,
由(1)知,所以,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)時(shí),求的單調(diào)區(qū)間和最值;
(2)①若對(duì)于任意的,不等式恒成立,求的取值范圍;②求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的方程為.曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)若與有三個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在含有個(gè)元素的集合中,若這個(gè)元素的一個(gè)排列(,,…,)滿(mǎn)足,則稱(chēng)這個(gè)排列為集合的一個(gè)錯(cuò)位排列(例如:對(duì)于集合,排列是的一個(gè)錯(cuò)位排列;排列不是的一個(gè)錯(cuò)位排列).記集合的所有錯(cuò)位排列的個(gè)數(shù)為.
(1)直接寫(xiě)出,,,的值;
(2)當(dāng)時(shí),試用,表示,并說(shuō)明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有 種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:10之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(1)用表示甲同學(xué)上學(xué)期間的每周五天中7:10之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)記“上學(xué)期間的某周的五天中,甲同學(xué)在7:10之前到校的天數(shù)比乙同學(xué)在7:10之前到校的天數(shù)恰好多3天”為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+y-6=0,過(guò)直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為A,B,則四邊形PAOB面積的最小值為______,此時(shí)四邊形PAOB外接圓的方程為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com