12.函數(shù)y=ln(cosx)在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上的圖象大致是( 。
A.B.C.D.

分析 先研究函數(shù)的奇偶性、再判斷函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:由于f(x)=ln(cosx),
∴f(-x)=ln[cos(-x)]=f(x),
∴函數(shù)是偶函數(shù),排除B,D;
又函數(shù)在(0,$\frac{π}{2}$)上單調(diào)遞減,排除C.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的圖象,考查同學(xué)們對(duì)函數(shù)基礎(chǔ)知識(shí)的把握程度以及數(shù)形結(jié)合的思維能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a+c=2b.
(I)求角B的取值范圍;
(Ⅱ)若A-C=$\frac{π}{3}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)A和B,系統(tǒng)A和系統(tǒng)B在任意時(shí)刻發(fā)生故障的概率分別為$\frac{1}{8}$和p.若在任意時(shí)刻恰有一個(gè)系統(tǒng)不發(fā)生故障的概率為$\frac{9}{40}$,則p=(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0)作圓x2+y2=$\frac{{a}^{2}}{9}$的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支與點(diǎn)P,O為坐標(biāo)原點(diǎn).若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),則雙曲線的離心率為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{17}}{3}$C.$\frac{\sqrt{17}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線y2=8x的準(zhǔn)線與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{16}$=1相交于A,B兩點(diǎn),如果拋物線的焦點(diǎn)F總在以AB為直徑的圓的內(nèi)部,則雙曲線的離心率取值范圍是( 。
A.(3,+∞)B.(1,3)C.(2,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一首詩詞《巍巍寶塔》中寫道:
“遙望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈”
根據(jù)詩詞中的描述,算出塔尖的燈數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在三棱錐S-ABC中,底面ABC是邊長(zhǎng)為3的等邊三角形,SA⊥SC,SB⊥SC,SA=SB=2,則該三棱錐的體積為$\frac{\sqrt{35}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在數(shù)列{an}中,已知a1=1,a2=2,an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n=2k-1}\\{3{a}_{n},n=2k}\end{array}\right.$(k∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足2an+1=an+an+2的正整數(shù)n的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,問是否存在正整數(shù)m,n,使得S2n=mS2n-1?若存在,求出所有的正整數(shù)對(duì)(m,n);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知離心率為$\frac{\sqrt{2}}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)(0,-1),且F1、F2分別是橢圓C的左、右焦點(diǎn),不經(jīng)過F1的斜率為k的直線l與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)如果直線AF1、l、BF1的斜率依次成等差數(shù)列,求k的取值范圍,并證明AB的中垂線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案