【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.

(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.

【答案】(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,值域為;(2

【解析】

1,結(jié)合條件所給的函數(shù)的單調(diào)性即可求解;

2)對任意,總存在,使得成立,等價于的值域是值域的子集,求出的值域,根據(jù)包含關(guān)系即可求出實數(shù)的值

解:(1,

根據(jù)條件所給出的性質(zhì)得,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,

的最小值為的最大值為,

所以的值域為

2)由已知對于函數(shù),,

,

對于函數(shù),,

由已知對任意,總存在,使得成立,等價于的值域是值域的子集,

,解得,即

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】黨的十九大報告指出,建設(shè)生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設(shè)提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農(nóng)村“廁所革命”,對改善農(nóng)村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應(yīng)國家推行的“廁所革命”,某農(nóng)戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設(shè)計沼氣池能使總造價最低?最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,各個側(cè)面均是邊長為的正方形,為線段的中點

(Ⅰ)求證:⊥平面

(Ⅱ)求證:直線∥平面;

(Ⅲ)設(shè)為線段上任意一點,在內(nèi)的平面區(qū)域(包括邊界)是否存在點,使,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上單調(diào)遞減.

(1)求參數(shù)的取值范圍;

(2)請畫出的示意圖,若關(guān)于的方程恰有兩個不相等的實數(shù)解,請根據(jù)圖象說明的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關(guān)于x的不等式的解集為 , 且函數(shù)在區(qū)間上不是單調(diào)函數(shù),則實數(shù)m的取值范圍為 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)的定義域為R,x<0,f(x)>1,且對任意的實數(shù)x、yR,等式f(x)f(y)=f(xy)恒成立.若數(shù)列{an}滿足a1f(0),f(an1)=,a2 017的值為(  )

A. 4 033 B. 3 029 C. 2 249 D. 2 209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)試確定函數(shù)在(0,+∞)上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面上, ,| |=| |=1, = + .若| |< ,則| |的取值范圍是(
A.(0, ]
B.( , ]
C.( , ]
D.( ]

查看答案和解析>>

同步練習冊答案