(本小題滿分10分)
如圖,已知與圓相切于點,經(jīng)過點的割線交圓于點,的平分線分別交于點

(Ⅰ)證明:=;
(Ⅱ)若,求的值.

(Ⅰ)∵是切線,是弦,∴. 又∵,  
.∵,
.(Ⅱ)

解析試題分析:(Ⅰ)∵是切線,是弦,

.  
又∵,  

,,
.……………………………5分
(Ⅱ) 由(Ⅰ)知,又∵,
.    
.  
,  ∴

由三角形內(nèi)角和定理可知,
是圓的直徑,∴.∴

中,,即,
.  ∴.  ………………………10分
考點:本題考查了考查與圓有關的比例線段的求法
點評:解題時要認真審題,仔細解答,注意弦切角定理的合理運用

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知,如圖,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.

(1) 求證:FA∥BE;
(2)求證:;           
(3)若⊙O的直徑AB=2,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖的三個頂點都在⊙O上,的平分線與BC邊和⊙O分別交于點D、E.

(1)指出圖中相似的三角形,并說明理由;
(2)若,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D,若PE=PA,,PD=1,BD=8,求線段BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,PA為0的切線,A為切點,PBC是過點O的割線,PA ="10,PB" =5、

(I)求證:;
(2)求AC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,A,B,CD四點在同一圓上,的延長線交于點,點的延長線上.

(Ⅰ)若,求的值;
(Ⅱ)若,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 (本小題滿分10分)選修4-1:幾何證明選講
如圖,AB是的直徑,AC是弦,直線CE和切于點C, AD丄CE,垂足為D.

(I) 求證:AC平分;
(II) 若AB=4AD,求的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.

(I)證明:CD//AB;
(II)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

選修4—1:幾何證明選講

如圖:在Rt∠ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,過D作,垂足為E,連接AE交⊙O于點F,求證:

查看答案和解析>>

同步練習冊答案