如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.

(I)證明:CD//AB;
(II)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓. 

解:

(I)因為EC=ED,所以∠EDC=∠ECD.
因為A,B,C,D四點在同一圓上,所以∠EDC=∠EBA.故∠ECD=∠EBA,所以CD//AB.…5分
(II)由(I)知,AE=BE,因為EF=FG,故∠EFD=∠EGC
從而∠FED=∠GEC.連結(jié)AF,BG,則△EFA≌△EGB,故∠FAE=∠GBE,
又CD//AB,∠EDC=∠ECD,所以∠FAB=∠GBA.
所以∠AFG+∠GBA=180°.故A,B,G,F(xiàn)四點共圓

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.

(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,已知與圓相切于點,經(jīng)過點的割線交圓于點,的平分線分別交于點

(Ⅰ)證明:=;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED。

(1)證明:CD//AB;(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點,AB是的直徑,過A點作的切線交于點E,并與BO1的延長線交于點P,PB分別與、交于C,D兩點.
求證:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

請考生在(22)、(23)、(24)三題中任選一題作答,如果多答,則按做的第一題記分.作答時用2B鉛筆在答題卡上把所選題目對應(yīng)題號右側(cè)的方框涂黑.
(22)(本小題滿分10分)選修4—1:幾何證明選講。如圖,⊙O是△的外接圓,D
是的中點,BDACE
(Ⅰ)求證:CD=DE·DB;
(Ⅱ)若,OAC的距離為1,求⊙O的半徑

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

直線與直線為參數(shù))的交點到原點O的距離是(    )

A.1 B. C.2 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題10分)
如圖,為⊙的直徑,切⊙于點交⊙于點,,點上.求證:是⊙的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,在⊙O中,弦CD垂直于直徑AB,求證:

查看答案和解析>>

同步練習(xí)冊答案