14.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+2)的切線,則b=1.

分析 先設(shè)切點,然后利用切點來尋找切線斜率的聯(lián)系,以及對應(yīng)的函數(shù)值,綜合聯(lián)立求解即可.

解答 解:設(shè)y=kx+b與y=lnx+2和y=ln(x+2)的切點分別為(x1,kx1+b)、(x2,kx2+b);
由導(dǎo)數(shù)的幾何意義可得k=$\frac{1}{{x}_{1}}$=$\frac{1}{{x}_{2}+1}$,得x1=x2+2
切線方程分別為y-(lnx1+2)=$\frac{1}{{x}_{1}}$(x-x1),即為y=$\frac{x}{{x}_{1}}$+lnx1+1,
或y-ln(x2+2)=$\frac{1}{{x}_{2}+2}$(x-x2),即為y=$\frac{x}{{x}_{1}}$+$\frac{2-{x}_{1}}{{x}_{1}}$+lnx1,
∴$\frac{2-{x}_{1}}{{x}_{1}}$=1,
解得x1=1,
∴b=1.
故答案為1.

點評 本題考查了導(dǎo)數(shù)的幾何意義,體現(xiàn)了方程思想,對學(xué)生綜合計算能力有一定要求,中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.春節(jié)期間某超市搞促銷活動,當(dāng)顧客購買商品的金額達(dá)到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有3個黑球,2個紅球,1個白球的箱子中(除顏色外,球完全相同)摸球.
(Ⅰ)當(dāng)顧客購買金額超過100元而不超過500元時,可從箱子中一次性摸出2個小球,每摸出一個黑球獎勵1元的現(xiàn)金,每摸出一個紅球獎勵2元的現(xiàn)金,每摸出一個白球獎勵3元的現(xiàn)金,求獎金數(shù)不少于4元的概率;
(Ⅱ)當(dāng)購買金額超過500元時,可從箱子中摸兩次,每次摸出1個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵5元的現(xiàn)金,每摸出一個紅球獎勵10元的現(xiàn)金,求獎金數(shù)小于20元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊過點P(-4a,3a),(a<0)則2sinα+cosα的值是-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2b,又sinA,sinC,sinB成等差數(shù)列.
(Ⅰ)求cos(B+C)的值;
(Ⅱ)若S△ABC=$\frac{3\sqrt{15}}{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+x.
(1)求定積分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲線y=f(x)的一條切線經(jīng)過點(0,-2),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC中,BC=$\sqrt{3}$,AC=2,角A=60°,則邊AB=(  )
A.$\sqrt{3}$B.2C.1D.$\sqrt{3}+\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$與$g(x)=2cos(2x-\frac{π}{4})(ω>0)$的對稱軸完全相同,則函數(shù)$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$在[0,π]上的一個遞增區(qū)間是(  )
A.$[0,\frac{π}{8}]$B.$[0,\frac{π}{4}]$C.$[\frac{π}{8},π]$D.$[\frac{π}{4},π]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將一個質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b,若已知出現(xiàn)了點數(shù)5,則使不等式a-b+3>0成立的事件發(fā)生的概率為( 。
A.$\frac{33}{36}$B.$\frac{3}{4}$C.$\frac{9}{11}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為$\frac{1}{7}$,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機(jī)會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù);
(Ⅱ)求取球次數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案