已知方程=1表示焦點(diǎn)在y軸上的橢圓,則實數(shù)k的取值范圍是( )
A. B.(1,+∞) C.(1,2) D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(e)+ln x,則f′(e)=( )
A.1 B.-1 C.-e-1 D.-e
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題6第2課時練習(xí)卷(解析版) 題型:選擇題
簽盒中有編號為1、2、3、4、5、6的六支簽,從中任意取3支,設(shè)X為這3支簽的號碼之中最大的一個,則X的數(shù)學(xué)期望為( )
A.5 B.5.25 C.5.8 D.4.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第3課時練習(xí)卷(解析版) 題型:解答題
橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn).設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明+為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第2課時練習(xí)卷(解析版) 題型:選擇題
設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5.若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為( )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第1課時練習(xí)卷(解析版) 題型:填空題
已知x2+y2=4上恰好有3個點(diǎn)到直線l:y=x+b的距離都等于1,則b=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題5第1課時練習(xí)卷(解析版) 題型:選擇題
已知直線l1:k1x+y+1=0與直線l2:k2x+y-1=0,那么“k1=k2”是“l1∥l2”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第1課時練習(xí)卷(解析版) 題型:解答題
如圖,四面體ABCD中,△ABC與△DBC都是邊長為4的正三角形.
(1)求證:BC⊥AD;
(2)試問該四面體的體積是否存在最大值?若存在,求出這個最大值及此時棱長AD的大。蝗舨淮嬖,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第4課時練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的圖象中相鄰兩條對稱軸間的距離為,且點(diǎn)是它的一個對稱中心.
(1)求f(x)的表達(dá)式;
(2)若f(ax)(a>0)在上是單調(diào)遞減函數(shù),求a的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com