已知a,b∈R,函數(shù)f(x)=tanx在x=-
π
4
處與直線y=ax+b+
π
2
相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實數(shù)m( 。
A、有最小值-e
B、有最小值e
C、有最大值e
D、有最大值e+1
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出f(x)的導(dǎo)數(shù),求出切線的斜率,得a=2,將切點(-
π
4
,-1)代入切線方程,求得b=-1,再求g(x)的導(dǎo)數(shù),判斷g(x)在[1,2]上的單調(diào)性,求出最值,再由不等式m≤g(x)≤m2-2恒成立,即有
m≤g(1)=e+1
m2-2≥g(2)=e2-2
m≤m2-2
,解出m的取值范圍,即可判斷.
解答: 解:f(x)=tanx的導(dǎo)數(shù)f′(x)=(
sinx
cosx
)′=
sin2x+cos2x
cos2x
=
1
cos2x

則a=f′(-
π
4
)=
1
cos2(-
π
4
)
=2,將切點(-
π
4
,-1)代入切線方程,即
-1=-
π
4
×
2+b+
π
2
,即有b=-1.
則g(x)=ex-x2+2,令h(x)=g′(x)=ex-2x,
h′(x)=ex-2,在[1,2]上h′(x)>0恒成立,即h(x)在[1,2]上遞增,
即g′(x)在[1,2]上遞增,則有g(shù)′(x)≥g′(1)=e-2>0,
則g(x)在[1,2]上遞增,g(1)最小,g(2)最大,
不等式m≤g(x)≤m2-2恒成立,即有
m≤g(1)=e+1
m2-2≥g(2)=e2-2
m≤m2-2
,
解得m≤-e或e≤m≤e+1.即m的最大值為e+1.
故選D.
點評:本題考查導(dǎo)數(shù)的運用:求切線方程和判斷單調(diào)性,考查函數(shù)的單調(diào)性及運用,考查不等式的恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(x-1),則在(-∞,0)上f(x)的函數(shù)析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x),g(x)都是定義在R上的奇函數(shù),且F(x)=3f(x)+5g(x)+2,若F(a)=b則F(-a)等于(  )
A、-b+4B、-b+2
C、b-2D、b+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2kx-8在[2,10]上是單調(diào)函數(shù),則k的取值范圍是( 。
A、k≤2
B、k≥10
C、2≤k≤10
D、k≤2或k≥10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某型號進口儀器定價為每臺a元,可售出b臺,如果每臺降價x成(1成為10%),那么售出數(shù)量就增加mx成,(m∈R).
(1)試建立降價后的營業(yè)額y關(guān)于每臺降價x成的函數(shù)關(guān)系式,并求出m=
5
4
時,每臺降價多少成時,營業(yè)額y最大?
(2)為使?fàn)I業(yè)額比降價前有所增加,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x-1)+
x2-4
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a5+a6=3,a15+a16=6,則a25+a26=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U、A={1,3,5,7},∁UA={2,4,6},∁UB={1,4,6},則集合B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:全集U={x|-3<x≤4}、A={x|-3<x≤-1}、B={x|-1<x≤4},則不正確的選項是( 。
A、A∪B=∪
B、A∩B=ϕ
C、A∪(∁UB)=U
D、(∁UA)∩(∁UB)=∅

查看答案和解析>>

同步練習(xí)冊答案