【題目】已知過的動(dòng)圓恒與軸相切,設(shè)切點(diǎn)為是該圓的直徑.

(Ⅰ)求點(diǎn)軌跡的方程;

(Ⅱ)當(dāng)不在y軸上時(shí),設(shè)直線與曲線交于另一點(diǎn),該曲線在處的切線與直線交于點(diǎn).求證: 恒為直角三角形.

【答案】(1) ;(2) 證明見解析.

【解析】試題分析:(Ⅰ)設(shè)點(diǎn) ,點(diǎn)是點(diǎn) 軸射影的中點(diǎn),即 ,根據(jù)幾何關(guān)系可知 ,將其轉(zhuǎn)化為數(shù)量積的坐標(biāo)表示即為軌跡方程;(Ⅱ)設(shè)直線的方程為 與拋物線方程聯(lián)立,交于兩點(diǎn),設(shè) ,根據(jù)導(dǎo)數(shù)的幾何意義求和兩點(diǎn)的直線斜率求 ,證明 ,即說明是直角三角形.

試題解析:(Ⅰ) 設(shè)點(diǎn)坐標(biāo)為,則點(diǎn)坐標(biāo)為

因?yàn)?/span>是直徑,所以,或、均在坐標(biāo)原點(diǎn).

因此 ,而 ,

故有,即,

另一方面,設(shè)是曲線上一點(diǎn),

則有,

中點(diǎn)縱坐標(biāo)為,

故以為直徑的圓與 軸相切.

綜上可知點(diǎn)軌跡的方程為

(Ⅱ)設(shè)直線的方程為,

得:

設(shè) ,則有

對(duì)求導(dǎo)知,

從而曲線EP處的切線斜率,

直線的斜率,

于是

因此

所以恒為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,設(shè)

(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;

(2)在中,分別為內(nèi)角的對(duì)邊,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 的圖象在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)若函數(shù)),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)(I)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為12萬輛時(shí)的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線: 為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:

①當(dāng)時(shí), 中直線的斜率為

中的所有直線可覆蓋整個(gè)坐標(biāo)平面.

③當(dāng)時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;

④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;

其中正確的是__________(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)分別求函數(shù)在區(qū)間上的極值;

(2)求證:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分) 已知拋物線Cy=-x2+4x-3

1)求拋物線C在點(diǎn)A0,-3)和點(diǎn)B30)處的切線的交點(diǎn)坐標(biāo);

2)求拋物線C與它在點(diǎn)A和點(diǎn)B處的切線所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
①函數(shù) 是奇函數(shù);
②存在實(shí)數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
是函數(shù) 的一條對(duì)稱軸;
⑤函數(shù) 的圖象關(guān)于點(diǎn) 成中心對(duì)稱.
其中正確命題的序號(hào)為

查看答案和解析>>

同步練習(xí)冊(cè)答案