分析 結(jié)合直觀圖,根據(jù)正視圖、俯視圖均為全等的等腰直角三角形,可得平面BCD⊥平面ABD,分別求得△BDC和△ABD的高,即為側(cè)視圖直角三角形的兩直角邊長(zhǎng),代入面積公式計(jì)算.
解答 解:如圖:∵正視圖、俯視圖均為全等的等腰直角三角形,
∴平面BCD⊥平面ABD,
又O為BD的中點(diǎn),∴CO⊥平面ABD,OA⊥平面BCD,
三角形ACD與△ABC等式等邊三角形,邊長(zhǎng)為2,所以面積相等為$\sqrt{3}$,
又△ABD和△BCD面積和為正方形的面積4,
∴三棱錐C-ABD的表面積為2$\sqrt{3}$+4;
故答案為:4+2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了由正視圖、俯視圖求幾何體的表面積,判斷幾何體的特征及相關(guān)幾何量的數(shù)據(jù)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32}{3}$ | B. | 8 | C. | 12 | D. | $\frac{40}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{5\sqrt{2}}}{13}$ | B. | $\frac{{7\sqrt{2}}}{13}$ | C. | $\frac{{17\sqrt{2}}}{26}$ | D. | $\frac{{7\sqrt{2}}}{26}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
男 | 女 | |
愛(ài)好 | 65 | 45 |
不愛(ài)好 | 40 | 50 |
A. | 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)” | |
B. | 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)” | |
C. | 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)” | |
D. | 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | -6 | C. | -3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com