分析 (1)根據(jù)絕對值的性質(zhì)求出f(x)的最小值,從而求出k的范圍即可;(2)通過討論x的范圍,求出不等式的解集即可.
解答 解:(1)若f(x)≥3-k對任意x∈R恒成立,
即(|x-3|+|x-2|)min≥3-k.
又|x-3|+|x-2|≥|x-3-x+2|=1,
(|x-3|+|x-2|)min=1≥3-k,
解得k≥2.
(2)f(x)<3,即|x-3|+|x-2|<3,
x≥3時,x-3+x-2<3,解得:3≤x<4,
2<x<3時,3-x+x-2=1<3,成立
x≤2時,3-x+2-x=5-2x<3,解得:1<x≤2,
故不等式的解集是:(1,4).
點評 本題考查了解絕對值不等式問題,考查絕對值的性質(zhì),是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$π],(k∈Z) | B. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z) | ||
C. | [kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π],(k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,8) | B. | ($\frac{4}{5}$,8] | C. | [$\frac{4}{5}$,8) | D. | [$\frac{4}{5}$,2)∪(8,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com