如圖是一個(gè)幾何體的三視圖,則該幾何體的體積是( 。
A、32+8π
B、16+8π
C、32+4π
D、16+4π
考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三棱柱的三視圖可得該幾何體是一個(gè)長(zhǎng)方體和圓柱的組合體,分別求出兩個(gè)幾何體的體積,相加可得答案.
解答: 解:由三棱柱的三視圖可得該幾何體是一個(gè)長(zhǎng)方體和圓柱的組合體,
長(zhǎng)方體的長(zhǎng)寬高分別為:4,4,2,故體積為:4×4×2=32,
圓柱的底面直徑為4,即底面半徑為2,高為2,故體積為:π•22•2=8π,
故組合體的體積V=32+8π,
故選:A
點(diǎn)評(píng):本題考查了由三視圖求原幾何體的體積和表面積,解答的關(guān)鍵是由三視圖還原原圖形,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知3x-3-x=
8
9
,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a5=9,a7=13,數(shù)列{bn}的前n項(xiàng)和Sn=2n-1(n∈N+),
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+bn,數(shù)列{cn}的前n項(xiàng)和為Tn.求證:Tn≥2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)三棱柱的三視圖如圖所示,則該三棱柱的表面積為( 。
A、4
5
+4
2
+5
B、2
5
+2
2
+
5
2
C、
2
5
+2
2
+3
3
D、2
5
+2
2
+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)數(shù)a=0.43,b=log30.4,c=30.4的大小關(guān)系是
 
(由大到小排列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),則函數(shù)g(x)的遞減區(qū)間是( 。
A、(0,1]
B、(0,1)
C、(-∞,0)
D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈{2,4},b∈{1,3},函數(shù)f(x)=
1
2
ax2+bx+1.
(1)求f(x)在區(qū)間(-∞,-1]上是減函數(shù)的概率;
(2)從f(x)中隨機(jī)抽取兩個(gè),求它們?cè)冢?,f(1))處的切線互相平行的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α,β,直線l,m,且有l(wèi)⊥α,m?β,給出下列命題:
①若α∥β則l⊥m;
②若l∥m則l∥β;
③若α⊥β則l∥m;
④若l⊥m則l⊥β;
其中,正確命題有
 
.(將正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(α-
π
6
)=
5
3
,α∈(
π
6
,
π
2
),則sinα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案