【題目】已知函數(shù)的圖象與軸的交點至少有一個在原點右側(cè).
(1)求實數(shù)的取值范圍;
(2)令,求的值(其中表示不超過的最大整數(shù),例如:,);
(3)對(2)中的求函數(shù)的值域.
【答案】(1);(2);(3).
【解析】
(1)分和兩種情況討論,在時進行驗證即可,在時,由可分二次函數(shù)有且只有一個零點且為正零點、一個正零點和一個負零點、兩個正零點三種情況進行分類討論,由此可得出實數(shù)的取值范圍;
(2)求出,可得出,然后分和兩種情況討論,根據(jù)定義得出的值;
(3)分、、三種情況討論,在時代入函數(shù)的解析式計算即可,在時,利用函數(shù)的單調(diào)性得出該函數(shù)的值域,在時,考查,結(jié)合函數(shù)的單調(diào)性來得出值域,由此可得出函數(shù)的值域.
(1)①若,則,令,得,此時,函數(shù)只有一個正零點,合乎題意;
②若,由于.
(i)若函數(shù)有且只有一個零點且為正數(shù),則,解得;
(ii)若函數(shù)有一個正零點和一個負零點,則,解得;
(iii)若函數(shù)有兩個正零點時,則,解得.
綜上所述,實數(shù)的取值范圍是;
(2),.
當時,,此時;當時,,此時.
因此,;
(3).
①當時,;
②當時,,,則單調(diào)遞增,此時;
③當時,設(shè),則,,
此時,在上單調(diào)遞增,則.
設(shè),
則.
當時,;當且時,,數(shù)列單調(diào)遞增,;
設(shè),當且,數(shù)列單調(diào)遞增,
當時,.
所以,當時,函數(shù)的值域為.
綜上所述,函數(shù)的值域為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個粒子從原點出發(fā),在第一象限和兩坐標軸正半軸上運動,在第一秒時它從原點運動到點,接著它按圖所示在軸、軸的垂直方向上來回運動,且每秒移動一個單位長度,那么,在2018秒時,這個粒子所處的位置在點______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已定義,已知函數(shù)的定義域都是,則下列四個命題中為真命題的是_________.(寫出所有真命題的序號)
① 若都是奇函數(shù),則函數(shù)為奇函數(shù).
② 若都是偶函數(shù),則函數(shù)為偶函數(shù).
③ 若都是增函數(shù),則函數(shù)為增函數(shù).
④ 若都是減函數(shù),則函數(shù)為減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當時, 在上存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當時,對任意,存在,使,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務(wù),該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com