【題目】如圖,一個(gè)粒子從原點(diǎn)出發(fā),在第一象限和兩坐標(biāo)軸正半軸上運(yùn)動(dòng),在第一秒時(shí)它從原點(diǎn)運(yùn)動(dòng)到點(diǎn),接著它按圖所示在軸、軸的垂直方向上來回運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位長度,那么,在2018秒時(shí),這個(gè)粒子所處的位置在點(diǎn)______.

【答案】

【解析】

分析粒子在第一象限的運(yùn)動(dòng)規(guī)律得到數(shù)列{an}通項(xiàng)的遞推關(guān)系式an-an-1=2n,利用累加法求出an=n(n+1),由44×45=1980知,運(yùn)動(dòng)了1980秒時(shí)粒子到點(diǎn)A44(44,44),對(duì)運(yùn)動(dòng)規(guī)律的探索知:A1,A2,…,An中,奇數(shù)點(diǎn)處向下運(yùn)動(dòng),偶數(shù)點(diǎn)處向左運(yùn)動(dòng),由此可求得結(jié)果.

如圖,設(shè)粒子運(yùn)動(dòng)到A1,A2,…,An時(shí)所用的間分別為a1,a2,…,an,

a1=2,a2=6,a3=12,a4=20,…,an-an-1=2n,

a2-a1=2×2a3-a2=2×3,a4-a3=2×4,…,an-an-1=2n相加得:an-a1=2(2+3+4+…+n)=n2+n-2,則an=n(n+1),由44×45=1980,故運(yùn)動(dòng)了1980秒時(shí)它到點(diǎn)A44(44,44),

又由運(yùn)動(dòng)規(guī)律知:A1,A2,…,An中,奇數(shù)點(diǎn)處向下運(yùn)動(dòng),偶數(shù)點(diǎn)處向左運(yùn)動(dòng),

故粒子到達(dá)A44(44,44)時(shí)向左運(yùn)動(dòng)38秒即運(yùn)動(dòng)了2018秒到達(dá)點(diǎn)(6,44),

則所求點(diǎn)應(yīng)為(6,44).

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)直線交橢圓、兩點(diǎn),線段的中點(diǎn)為,直線是線段的垂直平分線,求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體,,.

1)若中點(diǎn)是,求證:;

2)若是線段上的動(dòng)點(diǎn),是面上的動(dòng)點(diǎn),且線段,的中點(diǎn)是,求動(dòng)點(diǎn)的軌跡與四面體圍成的較小的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在所有棱長都相等的三棱錐中,D,EF分別是AB,BCCA的中點(diǎn),下列四個(gè)命題:

1平面PDF;(2平面;

3)平面平面;(4)平面平面

其中正確命題的序號(hào)為________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輛汽車以千米/小時(shí)的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時(shí),每小時(shí)的油耗(所需要的汽油量)為升,其中為常數(shù),且

1)若汽車以千米/小時(shí)的速度行駛時(shí),每小時(shí)的油耗為升,欲使每小時(shí)的油耗不超過升,求的取值范圍;

2)求該汽車行駛千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB為橢圓)和雙曲線的公共頂點(diǎn),PQ分別為雙曲線和橢圓上不同于A、B的動(dòng)點(diǎn),且,),設(shè)AP、BP、AQ、BQ的斜率分別為、、.

1)若,求的值(用a、b的代數(shù)式表示);

2)求證:

3)設(shè)、分別為橢圓和雙曲線的右焦點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江蘇省濱臨黃海,每年夏秋季節(jié)常常受到臺(tái)風(fēng)的侵襲.據(jù)監(jiān)測(cè),臺(tái)風(fēng)生成于西北太平洋洋面上,其中心位于市南偏東方向的處,該臺(tái)風(fēng)先沿北偏西方向移動(dòng)后在處登陸,登陸點(diǎn)市南偏東方向處,之后,臺(tái)風(fēng)將以的速度沿北偏西方向繼續(xù)移動(dòng).已知登陸時(shí)臺(tái)風(fēng)的侵襲范圍(圓形區(qū)域)半徑為,并以的速度不斷增大.

1)求臺(tái)風(fēng)生成時(shí)中心市的距離;

2)臺(tái)風(fēng)登陸后多少小時(shí)開始侵襲市?(保留兩位有效數(shù)字)

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,過點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),且點(diǎn)為線段的中點(diǎn)

1)求橢圓的方程;

2)設(shè)點(diǎn)為坐標(biāo)原點(diǎn),過右焦點(diǎn)的直線交橢圓于兩點(diǎn),(不在軸上),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸的交點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè).

1)求實(shí)數(shù)的取值范圍;

2)令,求的值(其中表示不超過的最大整數(shù),例如:,)

3)對(duì)(2)中的求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案