11.拋擲一枚質(zhì)地均勻的骰子兩次,記事件A={兩次的點數(shù)均為偶數(shù)且點數(shù)之差的絕對值為2},則P(A)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

分析 基本事件總數(shù)n=6×6=36,記事件A={兩次的點數(shù)均為偶數(shù)且點數(shù)之差的絕對值為2},利用列舉法求出事件A包含的基本事件的個數(shù),由此能求出P(A).

解答 解:拋擲一枚質(zhì)地均勻的骰子兩次,
基本事件總數(shù)n=6×6=36,
記事件A={兩次的點數(shù)均為偶數(shù)且點數(shù)之差的絕對值為2},
由事件A包含的基本事件有:
(2,4),(4,2),(4,6),(6,4),共4個,
∴P(A)=$\frac{4}{36}=\frac{1}{9}$.
故選:A.

點評 本題考查概率的求法,考查列舉法、古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}|lg|x||,(x≠0)\\ 0,(x=0)\end{array}\right.$,則方程f2(x)-f(x)=0的實根共有7個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求曲線f(x)=lnx+x在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)上一點M關(guān)于漸進線的對稱點恰為右焦點F2,則該雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DF的中點.
(I)求證:BE∥平面ACF;
(II)求平面BCF與平面BEF所成銳二面角的余弦角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.向量$\overrightarrow a=(m,n)$,$\overrightarrow b=(-1,2)$,若向量$\overrightarrow a$,$\overrightarrow b$共線,且$|\overrightarrow a|=2|\overrightarrow b|$,則mn的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知a,b,c分別為∠A,∠B,∠C所對的邊,且a=4,b=4$\sqrt{3}$,∠A=30°,則∠B等于$\frac{π}{3}$,或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為$a,b,c.且滿足\frac{asinA+bsinB-csinC}{asinB}=\frac{{2\sqrt{3}}}{3}sinC$.
(1)求角C;
(2)若△ABC的中線CD的長為1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|2x-1|+ax-1(a∈R).
(1)當a=1時,解不等式f(x)≥0;
(2)若不等式f(a)+f(-a)≤0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案