【題目】為了了解一個小水庫中養(yǎng)殖的魚有關情況,從這個水庫中多個不同位置捕撈出100條魚,稱得每條魚的質量(單位:千克),并將所得數(shù)據(jù)分組,畫出頻率分布直方圖(如圖所示)
(Ⅰ)在答題卡上的表格中填寫相應的頻率;
(Ⅱ)估計數(shù)據(jù)落在(1.15,1.30)中的概率為多少;
(Ⅲ)將上面捕撈的100條魚分別作一記號后再放回水庫,幾天后再從水庫的多處不同位置捕撈出120條魚,其中帶有記號的魚有6條,請根據(jù)這一情況來估計該水庫中魚的總條數(shù)。
【答案】解:(Ⅰ)根據(jù)頻率分布直方圖可知,頻率=組距(頻率/組距),故可得下表
分組 | 頻率 |
0.05 | |
0.20 | |
0.28 | |
0.30 | |
0.15 | |
0.02 |
(Ⅱ)0.30+0.15+0.02=0.47,所以數(shù)據(jù)落在中的概率約為0.47.
(Ⅲ),所以水庫中魚的總條數(shù)約為2000條.
【解析】
解:(Ⅰ)根據(jù)頻率分布直方圖可知,頻率=組距(頻率/組距),故可得下表
分組 | 頻率 |
0.05 | |
0.20 | |
0.28 | |
0.30 | |
0.15 | |
0.02 |
(Ⅱ)0.30+0.15+0.02=0.47,所以數(shù)據(jù)落在中的概率約為0.47.
(Ⅲ),所以水庫中魚的總條數(shù)約為2000條.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值;
(2)若,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若且 上最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某連鎖經營公司所屬5個零售店某月的銷售額和利潤額資料如下表:
(1)畫出散點圖;
(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;
(3)若該公司還有一個零售店某月銷售額為10千萬元,試估計它的利潤額是多少?
(參考公式:,其中:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校有高中生1470人,現(xiàn)采用系統(tǒng)抽樣法抽取49人作問卷調查,將高一、高二、高三學生(高一、高二、高三分別有學生495人、493人、482人)按1,2,3,…,1470編號,若第一組用簡單隨機抽樣的方法抽取的號碼為23,則所抽樣本中高二學生的人數(shù)為
A. 15B. 16C. 17D. 18
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2) 已知點的極坐標為,求的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產甲、乙兩種產品所得利潤分別為和(萬元),它們與投入資金(萬元)的關系有如下公式:,,今將200萬元資金投入生產甲、乙兩種產品,并要求對甲、乙兩種產品的投入資金都不低于25萬元.
(Ⅰ)設對乙種產品投入資金(萬元),求總利潤(萬元)關于的函數(shù)關系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com