分析 通過(guò)觀察2f(x)+xf′(x)>x2,不等式的左邊像一個(gè)函數(shù)的導(dǎo)數(shù),又直接寫(xiě)不出來(lái),對(duì)該不等式兩邊同乘以x,∵x<0,∴會(huì)得到2xf(x)+x2f′(x)<x3,而這時(shí)不等式的左邊是(x2f(x))′,所以構(gòu)造函數(shù)F(x)=x2f(x),則能判斷該函數(shù)在(-∞,0)上是減函數(shù),根據(jù)函數(shù)f(x)的奇偶性,得到F(x)是偶函數(shù),發(fā)現(xiàn)不等式(x+2017)2f(x+2017)-2f(-2)<0可以變成F(x+2017)<F(-2)=F(2),從而|x+2017|<2,解這個(gè)不等式便可.
解答 解:由2f(x)+xf′(x)>x2,(x<0);
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0;
令F(x)=x2f(x);
則當(dāng)x<0時(shí),F(xiàn)'(x)<0,即F(x)在(-∞,0)上是減函數(shù);
∴F(x+2017)=(x+2017)2f(x+2017),F(xiàn)(-2)=4f(-2);
即不等式等價(jià)為F(x+2017)-F(-2)<0;
∵F(x)在(-∞,0)是減函數(shù);
偶函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),f(-x)=f(x),
∴F(-x)=F(x),F(xiàn)(x)在(0,+∞)遞增,
∴由F(x+2017)<F(-2)=F(2)得,|x+2017|<2,
∴-2019<x<-2015,
∴原不等式的解集是(-2019,-2015),
故答案為:(-2019,-2015).
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,兩個(gè)函數(shù)乘積的導(dǎo)數(shù)的求法,而構(gòu)造函數(shù)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,8) | B. | ($\frac{4}{5}$,8] | C. | [$\frac{4}{5}$,8) | D. | [$\frac{4}{5}$,2)∪(8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 12 | C. | 15 | D. | 18 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com