已知函數(shù))最小正周期是,求函數(shù)
的單調(diào)遞增區(qū)間.
=,周期,所以
所以=
從而當(dāng))時(shí),單調(diào)遞增
)時(shí),單調(diào)遞增
所以單調(diào)增區(qū)間是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)定義在上的函數(shù)滿足下面三個條件:
①對于任意正實(shí)數(shù)、,都有;  ②;
③當(dāng)時(shí),總有.
(1)求的值;
(2)求證:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)函數(shù)
(1)求的周期;(2)解析式及上的減區(qū)間;
(3)若,,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最大值是(   )
A.1B.C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),其中表示不超過的最大整數(shù),如,若有三個不同的根,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是R上的偶函數(shù),且在區(qū)間上是增函數(shù).令
,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)對于滿足的任意,,給出下列結(jié)論:
;                  ②;
.       ④
其中正確結(jié)論的個數(shù)有
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)的定義域被分成了四個不同的單調(diào)區(qū)間,則實(shí)數(shù)的取值范圍是(  )
A.     B.   C.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某企業(yè)投資72萬元興建一座環(huán)保建材廠. 第1年各種經(jīng)營成本為12萬元,以后每年的經(jīng)營成本增加4萬元,每年銷售環(huán)保建材的收入為50萬元. 則該廠獲取的純利潤達(dá)到最大值時(shí)是在第      年.

查看答案和解析>>

同步練習(xí)冊答案