精英家教網 > 高中數學 > 題目詳情
6.設等差數列{an}的前n項和為Sn,且滿足S2015>0,S2016<0,對任意正整數n,都有|an|>|ak|,則的值為( 。
A.1007B.1008C.1009D.1010

分析 由等差數列的求和公式和性質可得a1008>0,a1009<0,且|a1009|>|a1008|,由題意易得結論.

解答 解:由等差數列的求和公式和性質可得S2016=$\frac{2016({a}_{1}+{a}_{2016})}{2}$=1008(a1008+a1009)<0,
∴a1008+a1009<0
同理由S2015>0可得2015a1008>0,可得a1008>0,
∴a1008>0,a1009<0,d<0,
對任意正整數n,都有|an|>|ak|,則k=1009.
故選:C.

點評 本題考查了等差數列的通項公式及其前n項和公式、不等式的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.設函數f(x)是周期為6的偶函數,且當x∈[0,3]時f(x)=3x,則f(2015)=( 。
A.6B.3C.0D.-6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],記f(x)=$\frac{3}{2}$|$\overrightarrow{a}$+$\overrightarrow$|-$\overrightarrow{a}$•$\overrightarrow$,則f(x)的最小值為( 。
A.2B.$\frac{17}{8}$C.$\frac{{3\sqrt{3}-1}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(cosθ,sinθ)且$\overrightarrow a$⊥$\overrightarrow b$,則tanθ=( 。
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設a為實數,給出命題p:函數f(x)=(a-$\frac{3}{2}$)x是R上的減函數,命題q:關于x的不等式($\frac{1}{2}$)|x-1|≥a的解集為∅.
(1)若p為真命題,求a的取值范圍;
(2)若q為真命題,求a的取值范圍;
(3)若“p且q”為假命題,“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知直線a、b是平面α內的兩條直線,l是空間中一條直線.則“l(fā)⊥a,l⊥b”是“l(fā)⊥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,F為C的右焦點,A(0,-2),直線FA的斜率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)設E(x0,y0)是C上一點,從坐標原點O向圓E:(x-x02+(y-y02=3作兩條切線,分別與C交于P,Q兩點,直線OP,OQ的斜率分別是k1,k2,求證:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知等差數列{an}的前n項和Sn滿足S3=0,S5=-5,數列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016項的和為-$\frac{2016}{4031}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若雙曲線C:mx2+y2=1的離心率為2k(k>0),其中k為雙曲線C的一條漸近線的斜率,則m的值為( 。
A.-$\frac{1}{3}$B.$\frac{-1-\sqrt{17}}{8}$C.-3D.$\frac{-1±\sqrt{17}}{8}$

查看答案和解析>>

同步練習冊答案