A. | $3\sqrt{3}$ | B. | $\frac{{\sqrt{39}}}{2}$ | C. | $\frac{{26\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{39}}}{3}$ |
分析 由題意和三角形的面積公式列出方程求出c,由條件和余弦定理求出a,由正弦定理求出$\frac{a+b+c}{sinA+sinB+sinc}$的值.
解答 解:∵A=60°,b=1,其面積為$\sqrt{3}$,
∴$\frac{1}{2}bcsinA=\sqrt{3}$,解得c=4,
由余弦定理得,a2=b2+c2-2bccosA
=1+16-2×$1×4×\frac{1}{2}$=13,
則a=$\sqrt{13}$,
由正弦定理得,
$\frac{a+b+c}{sinA+sinB+sinc}=\frac{a}{sinA}=\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$
=$\frac{2\sqrt{13}}{\sqrt{3}}$=$\frac{2\sqrt{39}}{3}$,
故選D.
點(diǎn)評(píng) 本題考查正弦定理、余弦定理,以及三角形的面積公式,考查方程思想,化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}+3}{2}$ | B. | $\sqrt{5}$+3 | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | 1 | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\frac{9}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2<x≤5} | B. | {x|x<4或x>5} | C. | {x|2<x<3} | D. | {x|x<2或x≥5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+y+7=0 | B. | 2x-y+5=0 | C. | x-2y+1=0 | D. | x-2y+5=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com