【題目】設矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設AB=x,求△ADP的最大面積及相應x的值.

【答案】解:由題意可知,矩形ABCD(AB>CD)的周長為24,
AB=x,即AD=12﹣x,
設PC=a,則DP=x﹣a,AP=a,而△ADP為直角三角形,
∴(12﹣x)2+(x﹣a)2=a2
,


= =
當且僅當 時,即 ,此時 滿足AB>AD,
時△ADP取最大面積為
【解析】由題意可知,AB=x,即AD=12﹣x.設PC=a,則DP=x﹣a,AP=a,再根據(jù)△ADP為直角三角形,得出a關于x的表達式,再用三角形面積計算公式,得出△ADP的面積關于x的表達式,再利用基本不等式可得△ADP的面積的最大值及相應的x的值.
【考點精析】本題主要考查了基本不等式的相關知識點,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(x個月)和市場占有率(y%)的幾組相關對應數(shù)據(jù):

x

1

2

3

4

5

y

0.02

0.05

0.1

0.15

0.18

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

(2)根據(jù)上述回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經(jīng)過多少個月,該款旗艦機型市場占有率能超過0.5%(精確到月)

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若方程恰有個互異的實數(shù)根,則實數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,直線AB的方程為3x﹣2y﹣1=0,直線AC的方程為2x+3y﹣18=0.直線BC的方程為3x+4y﹣m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當△ABC的BC邊上的高為1時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點是橢圓上任意一點,線段的垂直平分線交于點,點的軌跡記為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)過的直線交曲線于不同的,兩點,交軸于點,已知,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若tan =2sinC且AB=3,則△ABC的周長的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),.

(1),設,試證明存在唯一零點,并求的最大值;

(2)若關于的不等式的解集中有且只有兩個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知內(nèi)角AB,C所對的邊分別為a,b,c,向量m=(2sin B,- ),n,且mn.

(1)求銳角B的大;

(2)如果b=2,求△ABC的面積SABC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題是全稱命題還是存在性命題,并判斷其真假:

(1)對任意x∈R,zx>0(z>0);

(2)對任意非零實數(shù)x1,x2,若x1x2,則

(3)α∈R,使得sin(α)=sin α;

(4)x∈R,使得x2+1=0.

查看答案和解析>>

同步練習冊答案