【題目】判斷下列命題是全稱命題還是存在性命題,并判斷其真假:
(1)對任意x∈R,zx>0(z>0);
(2)對任意非零實數(shù)x1,x2,若x1<x2,則;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
【答案】(1))是全稱命題,真命題;(2)是全稱命題,假命題;(3)是存在性命題,真命題;(4)是存在性命題,假命題.
【解析】試題分析:(1)任意型是全稱命題,根據(jù)指數(shù)函數(shù)性質(zhì)判斷真假(2)任意型是全稱命題,根據(jù)倒數(shù)性質(zhì)得真假(3)存在型是存在性命題,根據(jù)三角函數(shù)性質(zhì)判斷真假(4)存在型是存在性命題,根據(jù)二次方程解判斷真假
試題解析:解:(1)(2)是全稱命題,(3)(4)是存在性命題.
(1)∵zx>0(z>0)恒成立,
∴命題(1)是真命題.
(2)存在x1=-1,x2=1,x1<x2,但,
∴命題(2)是假命題.
(3)當α=時,sin(α+)=sin α成立,
∴命題(3)為真命題.
(4)對任意x∈R,x2+1>0,∴命題(4)是假命題.
科目:高中數(shù)學 來源: 題型:
【題目】設矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設AB=x,求△ADP的最大面積及相應x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時, 求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)姆种迪嗉雍蠓Q為該局的得分,計算完得分后將球放回袋中.當出現(xiàn)第局得分()的情況就算游戲過關,同時游戲結(jié)束,若四局過后仍未過關,游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時局數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)試判斷函數(shù)的零點個數(shù);
(Ⅱ)若函數(shù)在上為增函數(shù),求整數(shù)的最大值.
(可能要用的數(shù)據(jù): , , ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設圓T與橢圓C交于點M與點N.
(1)求 的最小值;
(2)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:丨OR丨丨OS丨為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,a≠1.設命題p:函數(shù)y=loga(x+1)在(0,+∞)內(nèi)單調(diào)遞減;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.若p或q為真,p且q為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線: 與橢圓: 在第一象限的交點為, 為坐標原點, 為橢圓的右頂點, 的面積為.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點作直線交于、 兩點,射線、分別交于、兩點,記和的面積分別為和,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com