分析 (I)利用正弦定理、和差公式、誘導(dǎo)公式即可得出.
(II)利用余弦定理、三角形面積計(jì)算公式即可得出.
解答 解:(Ⅰ)由正弦定理得:a=4sinA,b=4sinB,c=4sinC,
∵2acosA=ccosB+bcosC,
∴2sinA•cosA=sinCcosB+sinBcosC,
∴2sinA•cosA=sin(B+C),
∵A+B+C=π,∴sin(B+C)=sinA,
∴2sinA•cosA=sinA,
∵0<A<π,∴sinA≠0,
∴2cosA=1,即cosA=$\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
(II)由(I)可得:sinA=$\frac{\sqrt{3}}{2}$.
由(Ⅰ)得$a=4sinA=2\sqrt{3}$.
∵a2=b2+c2-2bcosA,∴bc=b2+c2-a2=18-12=6,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×6×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$.
點(diǎn)評 本題考查了正弦定理余弦定理、三角形面積計(jì)算公式、和差公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?p:?x∈R,x2≥sinx | B. | ?p:?x∈R,x2<sinx | C. | ?p:?x∈R,x2≥sinx | D. | ?p:?x∈R,x2≤sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 0或1 | D. | 以上答案都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2${\;}^{\frac{4}{3}}$ | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com