【題目】(本小題滿分13分) 已知橢圓經過點,離心率為,過點的直線與橢圓交于不同的兩點

1)求橢圓的方程;

2)求的取值范圍.

【答案】12

【解析】試題分析:(1)將點代入橢圓方程,結合關系式,組成方程組,可解得的值,從而可得橢圓的方程.2)由題意分析可知直線的斜率存在,設直線的方程為.將直線方程和橢圓方程聯(lián)立,消去整理為關于的一元二次方程.由題意可知其判別式大于0,可得的范圍. , 的坐標分別為.由韋達定理可得的值.根據數(shù)量積公式用表示.根據的范圍求得范圍.

試題解析:解:(1)由題意得解得,

橢圓 的方程為

2)由題意顯然直線的斜率存在,設直線的方程為,

.

直線 與橢圓交于不同的兩點,

,解得.

的坐標分別為, ,

, , ,

, 的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地有10個著名景點,其中8 個為日游景點,2個為夜游景點.某旅行團要從這10個景點中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點,第二天上午、下午各一個景點.

(1)甲、乙兩個日游景點至少選1個的不同排法有多少種?

(2)甲、乙兩日游景點在同一天游玩的不同排法有多少種?

(3)甲、乙兩日游景點不同時被選,共有多少種不同排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.

(1)求點Q的軌跡C2的直角坐標方程;

(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在路邊安裝路燈,路寬為,燈柱長為米,燈桿長為1米,且燈桿與燈柱成角,路燈采用圓錐形燈罩,其軸截面的頂角為,燈罩軸線與燈桿垂直.

⑴設燈罩軸線與路面的交點為,若米,求燈柱長;

⑵設米,若燈罩截面的兩條母線所在直線一條恰好經過點,另一條與地面的交點為(如圖2)

(圖1) (圖2)

(。┣的值;(ⅱ)求該路燈照在路面上的寬度的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次,如果每次拖7節(jié)車廂,則每日能來回10次.

(1)若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:

(2)在(1)的條件下,每節(jié)車廂能載乘客110人.問這列火車每天來回多少次才能使運營人數(shù)最多?并求出每天最多運營人數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(單位:小時).

1)應收集多少位女生的樣本數(shù)據?

2)根據這300樣本數(shù)據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據的分組區(qū)間為: .估計該校學生每周平均體育運動時間超過4小時的概率;

3)在樣本數(shù)據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認為該校學生的每周平均體育運動時間與性別有關


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在中學生測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評,某校高一年級有男生人,女生人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了名學生的測評結果,并作出頻數(shù)統(tǒng)計表如下:

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

5

表一:男生

等級

優(yōu)秀

合格

尚待改進

頻數(shù)

15

3

表二:女生

(1)從表二的非優(yōu)秀學生中隨機選取人交談,求所選人中恰有人測評等級為合格的概率;

(2)由表中統(tǒng)計數(shù)據填寫列聯(lián)表,試采用獨立性檢驗進行分析,能否在犯錯誤的概率不超過的前提下認為“測評結果優(yōu)秀與性別有關”,參考數(shù)據與公示: ,其中

臨界值表:

0.10

0.05

0.01

2.70

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(Ⅰ)已知常數(shù)解關于的不等式

(Ⅱ)若函數(shù)的圖象恒在函數(shù)圖象的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)y=的單調遞減區(qū)間是_____________.

(2)y=的遞增區(qū)間是____________________

查看答案和解析>>

同步練習冊答案