【題目】大荔縣某高中一社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖.將日均學(xué)習(xí)圍棋時(shí)不低于分鐘的學(xué)生稱為“圍棋迷”.

非圍棋迷

圍棋迷

合計(jì)

合計(jì)

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

2)現(xiàn)在從參與本次抽樣調(diào)查的名學(xué)生的男同學(xué)里面,依據(jù)是否為圍棋迷,采用分層抽樣的方法抽取名學(xué)生參與圍棋知識(shí)競(jìng)賽,再?gòu)?/span>人中任選人參與知識(shí)競(jìng)賽的賽前保障工作.求選到的人恰好是一個(gè)“圍棋迷”和一個(gè)“非圍棋迷”的概率?

附:,

【答案】1)見(jiàn)解析,無(wú)關(guān)(2

【解析】

1)由頻率分布直方圖可知“圍棋迷”的人數(shù),結(jié)合列聯(lián)表數(shù)據(jù)可把它補(bǔ)充完整,代入公式求得,得出結(jié)論;(2)根據(jù)分層抽樣的計(jì)算公式選出6名學(xué)生,再由古典概型即得.

1)由頻率分布直方圖可得“圍棋迷”學(xué)生人數(shù)為名,完成列聯(lián)表:

非圍棋迷

圍棋迷

合計(jì)

30

15

45

45

合計(jì)

75

25

100

將數(shù)據(jù)代入公式計(jì)算,可得,因?yàn)?/span>,所以沒(méi)有的把握認(rèn)為“圍棋迷”與性別有關(guān).

2)從參與本次抽樣調(diào)查的名學(xué)生的男同學(xué)里面,依據(jù)是否為圍棋迷,采用分層抽樣的方法抽取名學(xué)生參與圍棋知識(shí)競(jìng)賽,

則“非圍棋迷”(人),“圍棋迷”(人),從6人中選2人參與知識(shí)競(jìng)賽的賽前保障工作,有種結(jié)果,選到的人恰好是一個(gè)“圍棋迷”和一個(gè)“非圍棋迷”有種結(jié)果,所以選到的人恰好是一個(gè)“圍棋迷”和一個(gè)“非圍棋迷”的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,底面是以為斜邊的等腰直角三角形,側(cè)面是菱形且與底面垂直,,點(diǎn)中點(diǎn),點(diǎn)上靠近點(diǎn)的三等分點(diǎn).

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)長(zhǎng)方形木塊,三個(gè)側(cè)面積分別為8,1224,現(xiàn)將其削成一個(gè)正四面體模型,則該正四面體模型棱長(zhǎng)的最大值為(

A.2B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn).

1)當(dāng)時(shí),求的面積;

2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)中點(diǎn)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,.

1)求數(shù)列的通項(xiàng)公式;

2)已知數(shù)列的通項(xiàng)公式為,若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

3)設(shè),是否存在正整數(shù),使得數(shù)列中存在某項(xiàng)滿足成等差數(shù)列?若存在,求出符合題意的的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間(分鐘)

10

11

12

13

14

15

等候人數(shù)(人)

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值不超過(guò)1,則稱所求方程是恰當(dāng)回歸方程”.

1)若選取的是后面4組數(shù)據(jù),求關(guān)于的線性回歸方程;

2)判斷(1)中的方程是否是恰當(dāng)回歸方程;

3)為了使等候的乘客不超過(guò)35人,試用(1)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘?

附:對(duì)于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高米,它所占水平地面的長(zhǎng)米.該廣告畫最高點(diǎn)到地面的距離為米,最低點(diǎn)到地面距離米.假設(shè)某人眼睛到腳底的距離米,他豎直站在此電梯上觀看視角為.

(Ⅰ設(shè)此人到直線的距離為米,試用含的表達(dá)式表示

(Ⅱ此人到直線的距離為多少米時(shí),視角最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)5分,2小問(wèn)7分

圖,橢圓的左、右焦點(diǎn)分別為過(guò)的直線交橢圓于兩點(diǎn),且

1,求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

同步練習(xí)冊(cè)答案