【題目】已知函數(shù) 是自然對(duì)數(shù)的底數(shù), .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若 為整數(shù), ,且當(dāng) 時(shí), 恒成立,其中 為 的導(dǎo)函數(shù),求 的最大值.
【答案】
(1)解: .
若 ,則 恒成立,所以, 在區(qū)間 上單調(diào)遞增
若 ,當(dāng) 時(shí), , 在 上單調(diào)遞增.
綜上,當(dāng) 時(shí), 的增區(qū)間為 ;當(dāng) 時(shí), 的增區(qū)間為
(2)解:由于 ,所以,
當(dāng) 時(shí), ,故 ————①
令 ,則
函數(shù) 在 上單調(diào)遞增,而
所以 在 上存在唯一的零點(diǎn),
故 在 上存在唯一的零點(diǎn).
設(shè)此零點(diǎn)為 ,則 .
當(dāng) 時(shí), ;當(dāng) 時(shí), ;
所以, 在 上的最小值為 .由 可得
所以, 由于①式等價(jià)于 .
故整數(shù) 的最大值為2.
【解析】(1)根據(jù)題意求出導(dǎo)函數(shù)討論a的取值范圍即可得出函數(shù)的增區(qū)間。(2)由已知運(yùn)用參數(shù)分離可得求出導(dǎo)函數(shù)利用導(dǎo)函數(shù)的性質(zhì)即可得到原函數(shù)的單調(diào)區(qū)間,再運(yùn)用零點(diǎn)存在定理即可求得k的最大值。
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有教師400人,對(duì)他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:
學(xué)歷 | 35歲以下 | 35-55歲 | 55歲及以上 |
本科 | 60 | 40 | |
碩士 | 80 | 40 |
(1)若隨機(jī)抽取一人,年齡是35歲以下的概率為,求;
(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個(gè)樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在 處有極值 .
(1)求 , 的值;
(2)判斷函數(shù) 的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過兩小時(shí)免費(fèi),超過兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來該租車點(diǎn)騎游(各組一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為 , ;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為 , ;兩人租車時(shí)間都不會(huì)超過四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量 ,求 的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;
方案甲:員工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為 .第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.
方案乙:員工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為 ,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金 (元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),M為橢圓上除長軸端點(diǎn)外的任意一點(diǎn),且△MF1F2的周長為4+2 .
(1)求橢圓C的方程;
(2)過點(diǎn)D(0,﹣2)作直線l與橢圓C交于A、B兩點(diǎn),點(diǎn)N滿足 (O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),其中,記函數(shù)的定義域?yàn)?/span>.
(1)求函數(shù)的定義域;
(2)若函數(shù)的最大值為,求的值;
(3)若對(duì)于內(nèi)的任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,且滿足+n=2(n∈)
(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足(n∈),其前n項(xiàng)和為,試求滿足+>2018的最小正整數(shù)n.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com