A. | P⊆Q | B. | Q⊆P | C. | P=Q | D. | P∩Q=∅ |
分析 首先化簡集合Q,mx2+4mx-4<0對任意實數(shù)x恒成立,則分兩種情況:①m=0時,易知結(jié)論是否成立②m<0時mx2+4mx-4=0無根,則由△<0求得m的范圍.
解答 解:Q={m∈R|mx2+4mx-4<0對任意實數(shù)x恒成立},
對m分類:①m=0時,-4<0恒成立;
②m<0時,需△=(4m)2-4×m×(-4)<0,解得-1<m<0.
綜合①②知m≤0,所以Q={m∈R|-1<m≤0}.
因為P={m|-1<m≤0},
所以P=Q.
故選:C.
點評 本題通過集合關(guān)系來考查函數(shù)中的恒成立問題,容易忽略對m=0的討論,應(yīng)引起足夠的重視.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{27}$ | B. | $\frac{19}{27}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | $\frac{25}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | $\frac{11}{3}$ | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com