5.已知實(shí)數(shù)a>0,b>0,$\sqrt{2}$是4a與2b的等比中項(xiàng),則$\frac{1}{a}+\frac{2}$的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.8D.4

分析 利用等比中項(xiàng)的性質(zhì)可得2a+b=1.再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵實(shí)數(shù)a>0,b>0,$\sqrt{2}$是4a與2b的等比中項(xiàng),∴2=4a•2b,∴2a+b=1.
則$\frac{1}{a}+\frac{2}$=(2a+b)$(\frac{1}{a}+\frac{2})$=4+$\frac{a}$+$\frac{4a}$≥4+2$\sqrt{\frac{a}•\frac{4a}}$=8,當(dāng)且僅當(dāng)b=2a=$\frac{1}{2}$時(shí)取等號(hào).
其最小值是8.
故選:C.

點(diǎn)評(píng) 本題考查了等比中項(xiàng)的性質(zhì)、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)F(x)=$\frac{a•{2}^{x}-1}{{2}^{x}+1}$,(a為實(shí)數(shù)).
(1)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說(shuō)明理由;
(2)若對(duì)任意的x≥1,都有1≤f(x)≤3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合P={m|-1<m≤0},Q={m|mx2+4mx-4<0對(duì)任意x恒成立},則P與Q的關(guān)系是( 。
A.P⊆QB.Q⊆PC.P=QD.P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.化簡(jiǎn)(log43+log49)(log32+log38)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中:①y=3x-1②y=xx③y=5×2x④y=2x-1⑤y=5x,一定為指數(shù)函數(shù)的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),過(guò)F2作垂直于x軸的直線(xiàn)MF2交橢圓于M($\sqrt{2}$,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)左焦點(diǎn)F1的直線(xiàn)l與橢圓C交于A、B兩點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.過(guò)點(diǎn)P($\sqrt{3}$,1)且與圓x2+y2=4相切的直線(xiàn)方程$\sqrt{3}x+y-4=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)$y=\frac{{2{x^2}-3x}}{e^x}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=$\frac{\sqrt{2-x}}{ln(x-1)}$的定義域是(1,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案