分析 (1)利用和的余弦、正弦公式,結合三角不等式,即可證明結論;
(2)由(1)可得|cos[α+(β+γ]=|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,即可證明結論.
解答 證明:(1)|cos(α+β)|=|cosαcosβ-sinαsinβ|≤|cosαcosβ|+|sinαsinβ|≤|cosα|+|sinβ|;
|sin(α+β)|=|sinαcosβ-cosαsinβ|≤|sinαcosβ|+|cosαsinβ|≤|cosα|+|cosβ|.
(2)由(1)可得|cos[α+(β+γ)]≤|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,
∵α+β+γ=0,
∴|cos[α+β+γ]=1
∴|cosα|+|cosβ|+|cosγ|≥1.
點評 本題考查和的余弦、正弦公式,考查絕對值三角不等式,考查學生分析解決問題的能力,正確運用絕對值三角不等式是關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com