(本小題滿(mǎn)分14分)
如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,為底邊的中點(diǎn),為側(cè)棱的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)直線(xiàn)與平面所成角的正弦值為
證明:(Ⅰ)設(shè)的交點(diǎn)為O,連接,連接.

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134929087207.gif" style="vertical-align:middle;" />為的中點(diǎn),的中點(diǎn),
所以.又中點(diǎn),
所以 ,
所以 .
所以,四邊形為平行四邊形.所以.
平面,平面,則∥平面.  ………………5分
(Ⅱ)因?yàn)槿庵鱾?cè)面都是正方形,所以.
所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134930272255.gif" style="vertical-align:middle;" />平面,所以.
由已知得,所以,
所以平面.
由(Ⅰ)可知,所以平面.
所以.
因?yàn)閭?cè)面是正方形,所以.
平面,平面,
所以平面.               ………………………………………10分
(Ⅲ)解: 取中點(diǎn),連接
在三棱柱中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134930054275.gif" style="vertical-align:middle;" />平面,    
所以側(cè)面底面.
因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134931130407.gif" style="vertical-align:middle;" />是正三角形,且中點(diǎn),
所以,所以側(cè)面.
所以在平面上的射影.
所以與平面所成角.
.           …………………………………………14分
解法二:如圖所示,建立空間直角坐標(biāo)系.
設(shè)邊長(zhǎng)為2,可求得,
,,,
,.
(Ⅰ)易得,,
. 所以,所以.
平面,平面,則∥平面. ………………5分
(Ⅱ)易得,,
所以.
所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134931941540.gif" style="vertical-align:middle;" />,,
所以平面.           …………………………………………… 10分
(Ⅲ)設(shè)側(cè)面的法向量為,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134931395370.gif" style="vertical-align:middle;" />, ,,,
所以,.
 得解得
不妨令,設(shè)直線(xiàn)與平面所成角為
所以.
所以直線(xiàn)與平面所成角的正弦值為.………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

異面直線(xiàn)公垂線(xiàn)段,線(xiàn)段,分別在上移動(dòng),求中點(diǎn)軌跡

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線(xiàn)段上且=.
(I)證明:平面⊥平面;
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形和矩形所在的平面互相垂直,

,,是線(xiàn)段的中點(diǎn).
(1)求證∥平面;
(2)試在線(xiàn)段上確定一點(diǎn),使得所成的角是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,長(zhǎng)方體ABCD中,AB=BC=4,E的中點(diǎn),為下底面正方形的中心.求:(I)二面角CAB的正切值;
(II)異面直線(xiàn)AB所成角的正切值;
(III)三棱錐——ABE的體積.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方體,的棱長(zhǎng)為1,的中點(diǎn),則下列五個(gè)命題:
①點(diǎn)到平面,的距離為
②直線(xiàn)與平面,所成的角等于
③空間四邊形,在正方體六個(gè)面內(nèi)形成六個(gè)射影,其面積的最小值是
所成的角
⑤二面角的大小為 
其中真命題是                     。(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直角三角形的兩直角邊長(zhǎng)分別為3cm和4cm,則以斜邊為軸旋轉(zhuǎn)一周所得幾何體的表面積為                 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方體,的中點(diǎn).
(1)請(qǐng)?jiān)诰(xiàn)段上確定一點(diǎn)F使四點(diǎn)共面,并加以證明;
(2)求二面角的平面角的余弦值;
(3)點(diǎn)M在面內(nèi),且點(diǎn)M在平面上的射影恰為的重心,求異面直線(xiàn)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共13分)
已知如圖(1),正三角形ABC的邊長(zhǎng)為2a,CDAB邊上的高,E、F分別是AC
BC邊上的點(diǎn),且滿(mǎn)足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).
(Ⅰ) 試判斷翻折后直線(xiàn)AB與平面DEF的位置關(guān)系,并說(shuō)明理由
(Ⅱ) 求二面角B-AC-D的平面角的正切值.
 
圖(1)                  圖(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案