【題目】定義在上的函數(shù)若滿足: ,且,則稱函數(shù)為“指向的完美對稱函數(shù)”.已知是“1指向2的完美對稱函數(shù)”,且當時, .若函數(shù)在區(qū)間上恰有5個零點,則實數(shù)的取值范圍為( )

A. B. C. D.

【答案】B

【解析】是“1指向2的完美對稱函數(shù)”,所以,用1+x代替上式中的x值, ,所以,又因為,所以,所以,所以,所以函數(shù)的周期為4,其中,故 ,

,故當時, ,所以,即時, ,當時, .由得對稱中心為,周期為4,可得的對稱中心為,即均關于點對稱,結合的圖象關于點對稱及關于直線對稱,可畫出在區(qū)間上的圖象,如圖所示:

因為,直線點,故若函數(shù)在區(qū)間上恰有5個零點,則只需在區(qū)間上有兩個交點,設直線與曲線的切點為,則,故切線方程為:

.因為點在切線上,所以,解得(舍去),此時,又當直線過點時,k=1.故由圖,可知實數(shù)k的取值范圍為

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】①在中,若,,則此三角形的解的情況是兩解.

②數(shù)列滿足,,則

③在中,為中線上的一個動點,若,則的最小值是

④已知,則

⑤已知等比數(shù)列的前項和為,則,,成等比數(shù)列.

以上命題正確的有______(只填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設關于某設備的使用年限x和支出的維修費用y(萬元),有如下表的統(tǒng)計資料。試求:

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

⑴畫出數(shù)據(jù)的散點圖,并判斷yx是否呈線性相關關系.

⑵若yx呈線性相關關系,求線性回歸方程 y bx + a 的回歸系數(shù)ab;

⑶估計使用年限為10年時,維修費用是多少?

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知圓的圓心在直線上,且過點,與直線相切.

)求圓的方程

)設直線與圓相交于,兩點.求實數(shù)的取值范圍.

的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的方程是: ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)設過原點的直線與曲線交于 兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角A,B,C的對邊分別為ab,c.且滿足4cos2cos2B+C.

1)求角A;

2)若△ABC的面積為,周長為8,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)).以原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程是.

(1)求直線的直角坐標方程與圓的普通方程;

(2)點為直線上的一動點,過點作直線與圓相切于點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,底面是邊長為2的菱形, ,且平面.

1證明:平面平面

2若平面與平面的夾角為,試求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·臨川一中]海盜船是一種繞水平軸往復擺動的游樂項目,因其外形仿照古代海盜船而得名.現(xiàn)有甲、乙兩游樂場統(tǒng)計了一天6個時間點參與海盜船游玩的游客數(shù)量,具體數(shù)據(jù)如表:

時間點

8

10

12

14

16

18

甲游樂場

10

3

12

6

12

20

乙游樂場

13

4

3

2

6

19

(1)從所給6個時間點中任選一個,求參與海盜船游玩的游客數(shù)量甲游樂場比乙游樂場少的概率;

(2)記甲、乙兩游樂場6個時間點參與海盜船游玩的游客數(shù)量分別為,),現(xiàn)從該6個時間點中任取2個,求恰有1個時間點滿足的概率.

查看答案和解析>>

同步練習冊答案