16.已知數(shù)列{an}滿足a1=1,an+1=an+2n(n∈N*),則a3=7;通項(xiàng)公式an=2n-1.

分析 利用遞推關(guān)系、“累加求和”方法即可得出.

解答 解:∵a1=1,an+1=an+2n(n∈N*),∴a2=a1+2=3,a3=a2+22=3+4=7.
n≥2時(shí),an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1=$\frac{{2}^{n}-1}{2-1}$=2n-1.(n=1時(shí)也成立),
∴an=2n-1.
故答案為:2n-1.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、“累加求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i是虛數(shù)單位,復(fù)數(shù)$\frac{{2+{i^3}}}{1-i}$=(  )
A.$\frac{3+3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.要得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,可將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知無窮數(shù)列{an}滿足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均為非負(fù)實(shí)數(shù)且不同時(shí)為0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求數(shù)列{an}的前n項(xiàng)和Sn
(3)若a1=2,q=1,且{an}是單調(diào)遞減數(shù)列,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),證明:EF∥平面PAC;
(2)求三棱錐E-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知P是△ABC內(nèi)一點(diǎn),$\overrightarrow{AP}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,△PAC的面積為2016,則△PAB的面積為4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-2i}{a+i}$的實(shí)部與虛部互為相反數(shù),則實(shí)數(shù)a=( 。
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}為正項(xiàng)等差數(shù)列,滿足$\frac{1}{{a}_{1}}$+$\frac{4}{{a}_{2k-1}}$≤1(其中k∈N*,且k≥2),則ak的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)$\overrightarrow{a}$=(4,3),$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{5\sqrt{2}}{2}$,$\overrightarrow$在x軸上的投影為2,且|$\overrightarrow$|<14,則$\overrightarrow$為(2,-$\frac{2}{7}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案