11.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),證明:EF∥平面PAC;
(2)求三棱錐E-PAD的體積.

分析 (1)連結(jié)AC、EF,證明EF∥PC,利用直線與平面平行的判定定理證明EF∥平面PAC,
(2)求出對(duì)面三角形EAD的面積,利用等體積法轉(zhuǎn)化求解幾何體的體積即可.

解答 解:(1)證明:連結(jié)AC、EF
∵點(diǎn)E、F分別是邊BC、PB的中點(diǎn)
∴EF∥PC…(4分).
又EF?平面PAC,PC?平面PAC…(5分)
∴當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),EF∥平面PAC…(6分)
(2)∵PA⊥平面ABCD,且四邊形ABCD為矩形.
∴${S_{△EAD}}=\frac{1}{2}AD•AB=1$,…(9分)
∴${V_{E-PAD}}={V_{P-EAD}}=\frac{1}{3}{S_{EAD}}•PA=\frac{1}{3}$…(12分)

點(diǎn)評(píng) 本題考查直線與平面平行的判定定理以及幾何體的體積的求法,考查空間想象能力以及計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在四棱錐P-ABCD中,△ABC,△ACD都為等腰直角三角形,∠ABC=∠ACD=90°,E為PA的中點(diǎn).
(Ⅰ)求證:BE∥平面PCD;
(Ⅱ)若△PAC是邊長(zhǎng)為2的等邊三角形,PB=$\sqrt{2}$,求三棱錐P-BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z=(2-i)2,則z的共軛復(fù)數(shù)為(  )
A.3+4iB.3-4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某大型超市為促銷商品,特舉辦“購(gòu)物搖獎(jiǎng)100%中獎(jiǎng)”活動(dòng),凡消費(fèi)者在該超市購(gòu)物滿20元,享受一次搖獎(jiǎng)機(jī)會(huì),購(gòu)物滿40元,享受兩次搖獎(jiǎng)機(jī)會(huì)、依此類推,搖獎(jiǎng)機(jī)的旋轉(zhuǎn)圓盤是均勻的,扇形區(qū)域A、B、C、D、E所對(duì)應(yīng)的圓心角的比值分別為1:2:3:4:5,相應(yīng)區(qū)域分別設(shè)立一、二、三、四、五等獎(jiǎng),獎(jiǎng)金分別為5元、4元、3元、2元、1元.求某人購(gòu)物30元,獲得獎(jiǎng)金的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z滿足2z-$\overline{z}$=2+3i(i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{13}$D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}滿足a1=1,an+1=an+2n(n∈N*),則a3=7;通項(xiàng)公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,長(zhǎng)軸長(zhǎng)等于4,離心率為$\frac{1}{2}$,直線AB過焦點(diǎn)F1且與橢圓C交于A、B兩點(diǎn)(A在第一象限),△F1AF2與△F1BF2的面積比為7:3.
(1)求橢圓的方程;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若橢圓9x2+25y2=225上一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn),O為坐標(biāo)原點(diǎn),則ON=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),且PA=AC,點(diǎn)E為PC的中點(diǎn).
(1)求證:△PBC是直角三角形;
(2)求證:AE⊥平面PBC.

查看答案和解析>>

同步練習(xí)冊(cè)答案