已知函數(shù)f(x)+2f(-x)=x2+2x,求f(x)的解析式.
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:用-x代替x原式的x用加減消元,消去f(-x)后整理得到f(x)的解析式.
解答: 解:∵f(x)+2f(-x)=x2+2x,①,
∴f(-x)+2f(x)=x2-2x,②,
②×2-①得:3f(x)=x2-6x,
∴f(x)=
1
3
x2-2x.
點評:本題考查的知識點是函數(shù)的解析式求法,熟練掌握方程組的適用范圍及解答步驟是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果函數(shù)y=x2-4x+a-3b在0≤x≤5上的最小值為-1,最大值為4a,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體上任意選擇4個頂點,它們可能是如下各種幾何體的4個頂點,這些幾何體是
 
.(寫出所有正確結論的編號)
①矩形;
②不是矩形的平行四邊形;
③有三個面為等腰直角三角形,有一個面為等邊三角形的四面體;
④每個面都是等邊三角形的四面體;
⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x2+a
x
,且f(1)=3.
(1)試求a的值;
(2)用定義證明f(x)在[
2
2
,∞)上單調遞增;
(3)設關于x的方程f(x)=x+b的兩根為x1,x2,試問是否存在實數(shù)t,使得不等式2m2-tm+4≥|x1-x2|對任意的b∈[2,
13
]及m∈[
1
2
,2]恒成立?若存在,求出t的取值范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=(2-2cos
x
2
,3sin
x
2
),
OB
=(cos
x
2
,sin
x
2
)x∈R 
(1)求|
AB
|;
(2)求|
AB
|的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P,A,B,C,D是球O表面上的點,PA⊥平面ABCD,四邊形ABCD是邊長為2
3
的正方形,若PA=2
6
,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={a,b,c},B={0,1}.試問:從A到B的映射共有幾個?并將它們分別表示出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,直線ρsin(θ-
π
4
)=
2
2
與圓ρ=2cosθ的位置關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三角形中,∠A=60°,a=
3
,則三角形的面積的最大值為
 

查看答案和解析>>

同步練習冊答案