已知點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD是邊長為2
3
的正方形,若PA=2
6
,求△OAB的面積.
考點(diǎn):球內(nèi)接多面體
專題:計(jì)算題,空間位置關(guān)系與距離
分析:可將P,A,B,C,D補(bǔ)全為長方體ANCD-A′B′C′D′,讓P與A′重合,則該長方體的對角線PC即為球O的直徑(球O為該長方體的外接球,于是可求得PC的長度,可判斷△OAB為等邊三角形,從而而求其面積.
解答: 解:依題意,可將P,A,B,C,D補(bǔ)全為長方體ABCD-A′B′C′D′,讓P與A′重合,則球O為該長方體的外接球,長方體的對角線PC即為球O的直徑.
∵ABCD是邊長為2
3
正方形,PA⊥平面ABCD,PA=2
6
,
∴PC2=AP2+AC2=24+24=48,
∴2R=4
3
,R=OP=2
3
,
∴△OAB為邊長是2
3
的等邊三角形,
∴S△OAB=
1
2
×2
3
×2
3
×sin60°=3
3
點(diǎn)評:本題考查直線與平面垂直的性質(zhì),考查球內(nèi)接多面體的應(yīng)用,“補(bǔ)形”是關(guān)鍵,考查分析、轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ,sin2x,cosθ成等差數(shù)列,sinθ,sinx,cosθ成等比數(shù)列,求cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinx•cosx+2cos2x,x∈R.
(1)求f(x)的最小正周期;
(2)已知f(
α
2
)=
1
3
,α∈[0,π],求cos(α+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2+2ax-3a+4>0在x∈[1,2]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)+2f(-x)=x2+2x,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市對該市小微企業(yè)資金短缺情況統(tǒng)計(jì)如下:
小微企業(yè)短缺資金金額(萬元)[0,20)[20,40)[40,60)[60,80)[80,100)
頻率0.050.10.350.30,2
(1)試根據(jù)上表估計(jì)該市小微企業(yè)短缺資金金額的平均值;
(2)某銀行為更好地支持小微企業(yè)健康發(fā)展,從其第一批注資的A行業(yè)的4家小微企業(yè)和B行業(yè)的3家小微企業(yè)中隨機(jī)的選取4家小微企業(yè)進(jìn)行跟蹤調(diào)研,設(shè)選取的4家小微企業(yè)注資的B行業(yè)的個(gè)數(shù)為隨機(jī)變量X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在一個(gè)等差數(shù)列,使
Sn
S2n
是一個(gè)與n無關(guān)的常數(shù),若存在,求此常數(shù);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2x+3
-
1
2x+5
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=2,B=
π
6
,C=
π
4
,則△ABC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案