【題目】已知A、B分別是橢圓的左、右頂點(diǎn),P為橢圓C的下頂點(diǎn),F為其右焦點(diǎn)點(diǎn)M是橢圓C上異于A、B的任一動(dòng)點(diǎn),過點(diǎn)A作直線軸以線段AF為直徑的圓交直線AM于點(diǎn)A、N,連接FN交直線l于點(diǎn)點(diǎn)G的坐標(biāo)為,且,橢圓C的離心率為.
求橢圓C的方程;
試問在x軸上是否存在一個(gè)定點(diǎn)T,使得直線MH必過該定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo),若不存在,說明理由.
【答案】(1);(2)見解析
【解析】
根據(jù)題意可得,解得即可;假設(shè)在x軸上存在一個(gè)定點(diǎn),設(shè)動(dòng)點(diǎn),根據(jù)直線與直線的垂直的斜率的關(guān)系以及直線的斜率公式即可求出.
由題意得,
,,所求橢圓的方程為.
假設(shè)在x軸上存在一個(gè)定點(diǎn),使得直線MH必過定點(diǎn),
設(shè)動(dòng)點(diǎn),由于M點(diǎn)異于A,B,故,
由點(diǎn)M在橢圓上,故有,
又由知,,
直線AM的斜率,
又點(diǎn)N是以線段AF為直徑的圓與直線AM的交點(diǎn),
.
直線FN的方程,
,即,
,H兩點(diǎn)連線的斜率,
將式代入式,并整理得,
又P,T兩點(diǎn)連線的斜率.
若直線MH必過定點(diǎn),則必有恒成立,
即,
整理得,
將式代入式,
得,
解得,故直線MH過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡(jiǎn)即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標(biāo)方程為
(II)將的參數(shù)方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結(jié)束】
23
【題目】已知、、均為正實(shí)數(shù).
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)關(guān)于x的函數(shù).
(1)當(dāng)時(shí),求的值域;
(2)若不等式對(duì)恒成立,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)有3個(gè)零點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】省環(huán)保廳對(duì)、、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個(gè)) | 28 | ||
良(個(gè)) | 32 | 30 |
已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動(dòng)圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市在經(jīng)濟(jì)高速發(fā)展的同時(shí),根據(jù)中央文明委辦公室2017年度頒布的《全國(guó)文明城市(地級(jí)以上)測(cè)評(píng)體系》標(biāo)準(zhǔn),特制了創(chuàng)建全國(guó)文明城市三年行動(dòng)計(jì)劃(2018-2020年).在城市環(huán)境衛(wèi)生的治理方面,經(jīng)過兩年的治理,市容市貌煥然一新,為了調(diào)查市民對(duì)城區(qū)環(huán)境衛(wèi)生的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如圖所示的頻率分布直方圖,其中.
(1)求被調(diào)查市民滿意程度的平均數(shù)與中位數(shù)(精確到小數(shù)點(diǎn)后三位);
(2)若按照分層抽樣的方式從中隨機(jī)抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列五個(gè)命題:
①函數(shù)的一條對(duì)稱軸是;
②函數(shù)的圖象關(guān)于點(diǎn)(,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個(gè)命題中正確的有 (填寫正確命題前面的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com