8.已知函數(shù)f(x)=aex+(2-e)x(a為實數(shù),e為自然對數(shù)的底數(shù)),曲線y=f(x)在x=0處的切線與直線(3-e)x-y+10=0平行.
(1)求實數(shù)a的值,并判斷函數(shù)f(x)在區(qū)間[0,+∞)內(nèi)的零點個數(shù);
(2)證明:當(dāng)x>0時,f(x)-1>xln(x+1).

分析 (1)求出函數(shù)的導(dǎo)數(shù),求出a的值,得到函數(shù)的解析式,求出函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)的零點即可;
(2)問題等價于$\frac{f(x)-1}{x}>ln(x+1)$,記g(x)=ex-(x+1),根據(jù)函數(shù)的單調(diào)性證明即可.

解答 解:(1)f'(x)=aex+2-e,由題設(shè),可知曲線y=f(x)在x=0處的切線的斜率k=f'(0)=a+2-e=3-e,解得a=1,
∴f(x)=ex+(2-e)x,
∴當(dāng)x≥0時,f'(x)=ex+2-e≥e0+2-e>0,
∴f(x)在區(qū)間[0,+∞)內(nèi)為增函數(shù),
又f(0)=1>0,∴f(x)在區(qū)間[0,+∞)內(nèi)沒有零點.
(2)當(dāng)x>0時,f(x)-1>xln(x+1)等價于$\frac{f(x)-1}{x}>ln(x+1)$,記g(x)=ex-(x+1),
則g'(x)=ex-1,當(dāng)x>0時,g'(x)>0,
∴當(dāng)x>0時,g(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,
∴g(x)>g(0)=0,即ex>x+1,兩邊取自然對數(shù),得x>ln(x+1)(x>0),
∴要證明$\frac{f(x)-1}{x}>ln(x+1)$(x>0),只需證明$\frac{f(x)-1}{x}>x$(x>0),
即證當(dāng)x>0時,ex-x2+(2-e)x-1≥0,①
設(shè)h(x)=ex-x2+(2-e)x-1,則h'(x)=ex-2x+2-e,令ϕ(x)=ex-2x+2-e,
則ϕ'(x)=ex-2,當(dāng)x∈(0,ln2)時,ϕ'(x)<0;當(dāng)x∈(ln2,+∞)時,ϕ'(x)>0.
∴ϕ(x)在區(qū)間(0,ln2)內(nèi)單調(diào)遞減,在區(qū)間(ln2,+∞)內(nèi)單調(diào)遞增,
又ϕ(0)=3-e>0,ϕ(1)=0,0<ln2<1,
∴ϕ(ln2)<0,∴存在x0∈(0,1),使得ϕ(x0)=0,
∴當(dāng)x∈(0,x0)∪(1,+∞)時,ϕ(x)>0;
當(dāng)x∈(x0,1)時,φ(x)<0,∴h(x)在區(qū)間(0,x0)內(nèi)單調(diào)遞增,
在區(qū)間(x0,1)內(nèi)單調(diào)遞減,在區(qū)間(1,+∞)內(nèi)單調(diào)遞增,
又h(0)=h(1)=0,∴h(x)=ex-x2+(2-e)x-1≥0,
當(dāng)且僅當(dāng)x=1時,取等號,即①式成立,
∴f(x)-1>xln(x+1).

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于虛軸對稱,z1=1+2i,i為虛數(shù)單位,則z1z2=( 。
A.1-2iB.5iC.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年四川省高二上學(xué)期期中考數(shù)學(xué)試卷(解析版) 題型:選擇題

命題“若,則”的否命題是( )

A.若,則

B.若,則

C.若,則

D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在拍畢業(yè)照時,六個同學(xué)排成一排照相,要求其中一對好友甲和乙相鄰,且同學(xué)丙不能和甲相鄰的概率為( 。
A.$\frac{1}{15}$B.$\frac{2}{15}$C.$\frac{4}{15}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如下圖所示的程序框圖,輸出S的值為(  )
A.1007B.1008C.1009D.1010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$-2$\overrightarrow$=(-7,-2),則$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.奧運會乒乓球比賽共設(shè)男子單打、女子單打、男子團體、女子團體共四枚金牌,保守估計中國乒乓球男隊單打或團體獲得一枚金牌的概率均為$\frac{3}{4}$,中國乒乓球女隊單打或團體獲得一枚金牌的概率均為$\frac{4}{5}$.
(1)求按此估計中國乒乓球女隊比中國乒乓球男隊多獲得一枚金牌的概率;
(2)記中國乒乓球隊獲得的金牌數(shù)為ξ,按此估計ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知O是坐標原點,雙曲線${x^2}-\frac{y^2}{n^2}=1({n>0})$的兩條漸近線分別為l1,l2,右焦點為F,以O(shè)F為直徑的圓交l1于異于原點O的點A,若點B在l2上,且$\frac{1}{2}\overrightarrow{BA}=\overrightarrow{AF}$,則雙曲線的方程為( 。
A.${x^2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{5}=1$D.${x^2}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知某路段最高限速60km/h,電子監(jiān)控測得連續(xù)4輛汽車的速度用用莖葉圖表示如圖示,若從中任取2輛,則恰好有1輛汽車超速的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案