【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

【答案】()見解析()

【解析】

()首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可; ()將原問題進(jìn)行等價(jià)轉(zhuǎn)化為,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可.

解:()當(dāng)時(shí),,

當(dāng)時(shí),上恒成立,函數(shù)上單調(diào)遞減;

當(dāng)時(shí),由得:;由得:

∴當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:

當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是

()對(duì)任意的,恒成立等價(jià)于:

,恒成立.

,,恒成立.

令:,

,

由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

∴當(dāng)時(shí),,即

又∵,

∴實(shí)數(shù)的取值范圍是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.命題的否定是

B.命題已知,若是真命題

C.命題則函數(shù)只有一個(gè)零點(diǎn)的逆命題為真命題

D.上恒成立上恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】絕大部分人都有患呼吸系統(tǒng)疾病的經(jīng)歷,現(xiàn)在我們調(diào)查患呼吸系統(tǒng)疾病是否和所處環(huán)境有關(guān).一共調(diào)查了人,患有呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.沒有患呼吸系統(tǒng)疾病的人,其中人在室外工作,人在室內(nèi)工作.

1)現(xiàn)采用分層抽樣從室內(nèi)工作的居民中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中隨機(jī)的抽取兩人,求兩人都有呼吸系統(tǒng)疾病的概率.

2)你能否在犯錯(cuò)誤率不超過的前提下認(rèn)為感染呼吸系統(tǒng)疾病與工作場(chǎng)所有關(guān);

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)的距離之和是4.

(1)求橢圓的方程;

(2)已知過的直線與橢圓交于兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)安排6名同學(xué)前往4所學(xué)校進(jìn)行演講,要求甲、乙兩同學(xué)不能前往同一個(gè)學(xué)校,每個(gè)學(xué)校都有人前往,每人只前往一個(gè)學(xué)校,則滿足上述要求的不同安排方案數(shù)為________.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為計(jì)算, 設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,DBC邊上的一點(diǎn),且AB=14,BD=6,ADC=,

Ⅰ)求sinDAC;

Ⅱ)求AD的長(zhǎng)和ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別是,,離心率為,左、右頂點(diǎn)分別為,.且垂直于軸的直線被橢圓截得的線段長(zhǎng)為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、(不與點(diǎn)、重合),直線與直線相交于點(diǎn),求證:、、三點(diǎn)共線.

查看答案和解析>>

同步練習(xí)冊(cè)答案