在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,求
(1)∠ADB的大;
(2)BD的長.
分析:(1)利用余弦定理,即可得出結(jié)論;
(2)利用正弦定理,可求BD的長.
解答:解:(1)∵cos∠ADC=
AD2+DC2-AC2
2AD•DC
=
102+62-142
2×10×6
=-
1
2
,…(3分)
∴cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
1
2
,…(5分)
∴∠ADB=60°                                    …(6分)
(2)∵∠DAB=180°-∠ADB-∠B=75°                   …(7分)
BD
sin∠DAB
=
AD
sin∠B
                                 …(9分)
得BD=
AD.sin75°
sin45°
=5(
3
+1)…(12分)
點(diǎn)評:本題考查余弦定理、正弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=50
3
,c=150,B=30°,則邊長a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=6,c=5
3
,A=30°
,則a=
21
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知B=60°,C=45°,c=3
2
,則b=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知B=
π
3
,AC=4
3
,D為BC邊上一點(diǎn).
(I)若AD=2,S△DAC=2
3
,求DC的長;
(Ⅱ)若AB=AD,試求△ADC的周長的最大值.

查看答案和解析>>

同步練習(xí)冊答案