8.設變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≤0\\ x+2y≤3\\ 4x-y≥-6\end{array}\right.$,則$z={2^x}{(\frac{1}{4})^y}$的最小值為$\frac{1}{32}$.

分析 由約束條件作出可行域,由$z={2^x}{(\frac{1}{4})^y}$=2x-2y,令t=x-2y,化為y=$\frac{x}{2}-\frac{t}{2}$,由圖求出t的最小值,則答案可求.

解答 解:由約束條件$\left\{\begin{array}{l}x-y≤0\\ x+2y≤3\\ 4x-y≥-6\end{array}\right.$作出可行域如圖,

$z={2^x}{(\frac{1}{4})^y}$=2x-2y,
令t=x-2y,化為y=$\frac{x}{2}-\frac{t}{2}$,
由圖可知,當直線y=$\frac{x}{2}-\frac{t}{2}$過A時,直線在y軸上的截距最大,t有最小值.
聯(lián)立$\left\{\begin{array}{l}{4x-y=-6}\\{x+2y=3}\end{array}\right.$,解得A(-1,2),
∴t的最小值為-5.
∴$z={2^x}{(\frac{1}{4})^y}$的最小值為${2}^{-5}=\frac{1}{32}$.
故答案為:$\frac{1}{32}$.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入a,b,c分別為1,2,0.3,則輸出的結果為( 。
A.1.125B.1.25C.1.3125D.1.375

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.現(xiàn)有1000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數(shù)據分組及各組的頻數(shù)如表,據此估計這1000根中纖維長度不小于37.5mm的根數(shù)是180.
纖維長度頻數(shù)
[22.5,25.5)3
[25.5,28.5)8
[28.5,31.5)9
[31.5,34.5)11
[34.5,37.5)10
[37.5,40.5)5
[40.5,43.5]4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=120°,AB=PC=2,$AP=BP=\sqrt{2}$.
(Ⅰ)線段AB上是否存在點M,使AB⊥平面PCM?并給出證明.
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知拋物線C:y2=8x,直線l:y=$\frac{{\sqrt{3}}}{3}$(x-2),直線l交C于A,B兩點,則|AB|等于( 。
A.16B.$16\sqrt{3}$C.32D.$32\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知i是虛數(shù)單位,若復數(shù)z=3-4i,則計算$\frac{\overline{z}}{i}$的結果為( 。
A.-4-3iB.4-3iC.4+3iD.-4+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{5π}{9}$)的值是(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=$\sqrt{3}$,側棱PA與底面ABCDE所成角為45°,S△PBE=$\sqrt{3}$,點M在側棱PC上,CM=2MP,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若復數(shù)z滿足z(1-i)=2i(i是虛數(shù)單位),$\overline{z}$是z的共軛復數(shù),則$\overline{z}$=-1-i.

查看答案和解析>>

同步練習冊答案